Skip to main content
Log in

Quenched Disorder–Controlled Resistive Relaxation in Near-Half-Doped Manganite Systems

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have investigated the influence of the disorder on the resistive relaxation effects in the Sm1-aSraMnO3 system where a is the fraction of the alkaline element. The disorder was introduced through chemical substitution of Mn sites with Fe doping, Ru doping, or forming composite structures by adding small fractions of BaTiO3. These three routes of adding disorder lead to a distinct behavior of Tc and TMIT that depends on the concentrations and types of dopants. All the samples with a measurable zero-field resistive relaxation effect exhibited two peaks in the temperature dependence of the relaxation rates. In particular, a negative peak is found at low temperatures near the onset temperature of anti-ferromagnetic ordering while a positive peak is found near the metal–insulator transition temperature. In an attempt to quantify the strength of the disorder, we have determined the ΔT for each sample where ΔT is defined as the difference in the metal–insulator transition temperature (TMIT) obtained from the warming and cooling curves in the temperature dependence of the resistivity. The magnitudes of the peaks increase in an exponential-like manner with the increasing thermal hysteresis width ΔT, which is a measure of the extent of the inhomogeneous magnetic state or disorder in the manganite system. On the other hand, the Ru substitution of Sm1-aSraMnO3 (SGSMO) reduced the thermal hysteresis width ΔT substantially and subsequently the relaxation rates. Our observations revealed a clear relationship between the quenched disorder and the resistive metastability in manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guzmán-Verri, G.G., Brierley, R.T., Littlewood, P.B.: Cooperative elastic fluctuations provide tuning of the metal–insulator transition. Nature 576, 429 (2019)

    Article  ADS  Google Scholar 

  2. Yang, W., Shi, Q., Miao, T., Li, Q., Cai, P., Liu, H., Lin, H., Bai, Y., Zhu, Y., Yu, Y., Deng, L., Wang, W., Yin, L., Sun, D., Zhang, X.G., Shen, J.: Achieving large and nonvolatile tunable magnetoresistance in organic spin valves using electronic phase separated manganites. Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  3. Dagotto, E.: Complexity in strongly correlated electronic systems. Science 309(80), 257 (2005)

  4. Miao, T., Deng, L., Yang, W., Ni, J., Zheng, C., Etheridge, J., Wang, S., Liu, H., Lin, H., Yu, Y., Shi, Q., Cai, P., Zhu, Y., Yang, T., Zhang, X., Gao, X., Xi, C., Tian, M., Wu, X., Xiang, H., Dagotto, E., Yin, L., Shen, J.: Direct experimental evidence of physical origin of electronic phase separation in manganites. Proc. Natl. Acad. Sci. U. S. A. 117, 7090 (2020)

    Article  ADS  Google Scholar 

  5. Zhu, Y., Du, K., Niu, J., Lin, L., Wei, W., Liu, H., Lin, H., Zhang, K., Yang, T., Kou, Y., Shao, J., Gao, X., Xu, X., Wu, X., Dong, S., Yin, L., Shen, J.: Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nat. Commun. 7, 3 (2016)

    Google Scholar 

  6. Gor'kov, L.P., Kresin, V.Z.: Mixed-valence manganites: fundamentals and main properties. Phys. Rep. 400, 149 (2004)

  7. Chen, X.J., Habermeier, H.U., Almasan, C.C.: Percolative metal-insulator transition in La 0.9 Sr 0.1 MnO 3 ultrathin films by resistive relaxation. Phys. Rev. B. Condens. Matter Mater. Phys. 68, 0 (2003)

  8. Chen, L., Fan, J., Tong, W., Hu, D., Ji, Y., Liu, J., Zhang, L., Pi, L., Zhang, Y., Yang, H.: Evolution of the intrinsic electronic phase separation in La 0.6 Er 0.1 Sr 0.3 MnO 3 perovskite. Sci. Rep. 6, 1 (2016)

  9. Asamitsu, A., Tomioka, Y., Kuwahara, H., Tokura, Y.: Current switching of resistive states in magnetoresistive manganites 388, 1995 (1997)

    Google Scholar 

  10. Li, F., Song, C., Wang, Y.Y., Cui, B., Mao, H.J., Peng, J.J., Li, S.N., Pan, F.: Optical control of magnetism in manganite films 024406, 1 (2016)

    ADS  Google Scholar 

  11. Saber, M.M., Egilmez, M., Schoofs, F., Ofer, O., Månsson, M., Robinson, J.W.A., Blamire, M., Chow, K.H., Jung, J.: Strain, spin disorder, and thickness dependence of magneto-transport in Sm0. 55Sr0. 45MnO3 films. Appl. Phys. Lett. 100, 0 (2012)

  12. Wang, J.Z., Sun, J.R., Dong, Q.Y., Liu, G.J., Shen, B.G.: Magnetic relaxation and phase separation in manganite Eu0. 55Sr0. 45MnO3. Solid State Commun. 149, 325 (2009)

  13. Niebieskikwiat, D., Tao, J., Zuo, J.M., Salamon, M.B.: Time-dependent phenomena in phase-separated electron-doped manganites. Phys. Rev. B - Condens. Matter Mater. Phys. 78, 1 (2008)

  14. Tao, J., Niebieskikwiat, D., Salamon, M.B., Zuo, J.M.: Lamellar phase separation and dynamic competition in La 0.23 Ca 0.77 MnO 3. Phys. Rev. Lett. 94, 3 (2005)

  15. Egilmez, M., Saber, M.M., Abdelhadi, M., Chow, K.H., Jung, J.: Anomalous aging and strain induced time dependent phenomena in ultra-thin La0. 65Ca0. 35MnO3 films. Phys. Lett. A 375, 4049 (2011)

  16. Levy, P., Parisi, F., Granja, L., Indelicato, E., Polla, G.: Novel dynamical effects and persistent memory in phase separated manganites. Phys. Rev. Lett. 89, 1370011 (2002)

    Google Scholar 

  17. Huang, Z., Gao, G., Zhang, F., Feng, X., Hu, L., Zhao, X., Sun, Y., Wu, W.: Dynamic phase separation as revealed by the strong resistance relaxation in epitaxially shear-strained La0. 67Ca0. 33MnO3/NdGaO3 (0 0 1) thin-films. J. Magn. Magn. Mater. 322, 3544 (2010)

  18. Freitas, R.S., Ghivelder, L., Damay, F., Dias, F., Cohen, L.F.: Magnetic relaxation phenomena and cluster glass properties of La 0.7− x Y x Ca 0.3 MnO 3 manganites. Phys. Rev. B - Condens. Matter Mater. Phys. 64, 1444041 (2001)

  19. Ulrich, M., García-Otero, J., Rivas, J., Bunde, A.: Slow relaxation in ferromagnetic nanoparticles: Indication of spin-glass behavior. Phys. Rev. B - Condens. Matter Mater. Phys. 67, 1 (2003)

  20. Markovich, V., Jung, G., Yuzhelevskii, Y., Gorodetsky, G., Hu, F.X., Gao, J.: Metastable resistivity of La 0.8 Ca 0.2 Mn O 3 manganite thin films. Phys. Rev. B - Condens. Matter Mater. Phys. 75, 1 (2007)

  21. Matsukawa, M., Akasaka, K., Noto, H., Suryanarayanan, R., Nimori, S., Apostu, M., Revcolevschi, A., Kobayashi, N.: Resistive relaxation in the field-induced insulator-metal transition of a (La 0.4 Pr 0.6) 1.2 Sr 1.8 Mn 2 O 7 bilayer manganite single crystal. Phys. Rev. B - Condens. Matter Mater. Phys. 72, 1 (2005)

  22. Nam DN, Khien NV, Dai NV, Hong LV, Phuc NX. Temperature memory and resistive glassy behavior of a perovskite manganite. Phys. Rev. B - Condens. Matter Mater. Phys. 77, 1 (2008)

  23. Rivas, J., Rivadulla, F., López-Quintela, M.A.: Novel collective magnetic relaxation phenomena in manganites: a spin-glass behavior? Phys. B Condens. Matter 354, 1 (2004)

    Article  ADS  Google Scholar 

  24. Kozlova, N., Dörr, K., Eckert, D., Handstein, A., Skourski, Y., Walter, T., Müller, K.H., Schultz, L.: Slow relaxation of grain boundary resistance in a ferromagnetic manganite. J. Appl. Phys. 93, 8325 (2003)

    Article  ADS  Google Scholar 

  25. Carneiro, A.D., Fonseca, F.C., Kimura, T., Jardim, R.D.: Relaxation of the electrical resistivity in Cr-doped Nd0. 5Ca0. 5MnO3 single crystals. J. Phys. Condens. Matter 20, (2008)

  26. Burton, J.D., Tsymbal, E.Y.: Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. 1 (2009)

  27. Quintero, M., Parisi, F., Leyva, G., Ghivelder, L.: Equilibrium tuned by a magnetic field in phase separated manganite. J. Phys. Condens. Matter 20, (2008)

  28. Tomioka, Y., Okimoto, Y., Jung, J.H., Kumai, R., Tokura, Y.: Critical control of competition between metallic ferromagnetism and charge/orbital correlation in single crystals of perovskite manganites. Phys. Rev. B - Condens. Matter Mater. Phys. 68, 1 (2003).

  29. Egilmez, M., Chow, K.H., Jung, J.: Low Field Magneto-Resistive Anisotropy in Polycrystalline Sm<inf>0.55</Inf>Sr<inf>0.45</Inf>MnO<inf>3</Inf>. Solid State Commun. 218, (2015)

  30. Alagoz, H.S., Živković, I., Mahmud, S.T., Saber, M.M., Perrin, G., Shandro, J., Khan, M., Zhang, Y., Egilmez, M., Jung, J., Chow, K.H.: Competing A‐site and B‐site doping effects on magneto‐transport of RE0. 55 Sr0. 45 Mn1− x Rux O3 manganites in the vicinity of the SGI and FMM border. Phys. Status Solidi Basic Res. 250, 2158 (2013)

  31. Egilmez, M., Ma, R., Chow, K.H., Jung, J.: The anisotropic magnetoresistance in epitaxial thin films and polycrystalline samples of La 0.65 Ca 0.35 Mn O 3. J. Appl. Phys. 105, 129 (2009)

  32. Egilmez, M., Chow, K.H., Jung, J., Fan, I., Mansour, AI., Salman, Z.: Metal-insulator transition, specific heat, and grain-boundary-induced disorder in Sm 0.55 Sr 0.45 Mn O 3. Appl. Phys. Lett. 92, 129 (2008).

  33. Marquina, C.: Magnetic versus orbital polarons in colossal magnetoresistance manganites 65, 1 (2002)

    Google Scholar 

  34. Endoh, Y., Hiraka, H., Tomioka, Y., Tokura, Y., Nagaosa, N., Fujiwara, T.: Orbital nature of ferromagnetic magnons in manganites 017206, 3 (2005)

    Google Scholar 

  35. Abramovich, A.I., Koroleva, L.I., Michurin, A.V., Gorbenko, O.Y., Kaul, A.R.: Relationship between colossal magnetoresistance and giant magnetostriction at Curie point in Sm0. 55Sr0. 45MnO3 293, 38 (2000)

    Google Scholar 

  36. Egilmez, M., Chow, K.H., Jung, J.: Oxygen-redistribution-induced disorder and magnetotransport properties of Sm 0.55 Sr 0.45 Mn O 3 manganites. Appl. Phys. Lett. 89, 129 (2006)

  37. Mahmud, S.T., Saber, M.M., Alagoz, H.S., Jung, J., Chow, K.H.: Current density and intrinsic electroresistance of the Sm1− xSrxMnO3 manganite. J. Phys. Chem. Solids 74, 1865 (2013)

    Article  ADS  Google Scholar 

  38. Saber, M.M., Egilmez, M., Mansour, A.I., Fan, I., Chow, K.H., Jung, J.: Evolution of Curie-Weiss behavior and cluster formation temperatures in Ru-doped Sm 0.55 Sr 0.45 MnO 3 manganites. Phys. Rev. B - Condens. Matter Mater. Phys. 82, (2010)

  39. Mahmud, S.T., Saber, M.M., Alagoz, H.S., Biggart, K., Bouveyron, R., Khan, M., Jung, J., Chow. K.H.: Disorder enhanced intrinsic electroresistance in Sm0. 60Sr0. 40Mn1− x Fe x O3. Appl. Phys. Lett. 100, 1 (2012)

  40. Sakai, H., Ito, K., Nishiyama, T., Yu, X., Matsui, Y., Miyasaka, S., Tokura, Y.: Dopant-Dependent Impact of Mn-Site Doping on Critical-State Manganites R 0.6 Sr0. 4MnO3 (R= La, Nd, Sm, and Gd). J. Phys. Soc. Japan 77, 2 (2008)

  41. Dhahri, J., Dhahri, A., Oummezzine, M., Hlil, EK.: Influence of Fe doped manganite on critical behavior of La0. 6Nd0. 1 (Ca, Sr) 0.3 Mn1− xFexO3. Phys. B Condens. Matter 458, 132 (2015)

  42. Kurbakov, A.I.: Electronic, structural and magnetic phase diagram of Sm1-xSrxMnO3 manganites. J. Magn. Magn. Mater. 322, 967 (2010)

    Article  ADS  Google Scholar 

  43. Navin, K., Kurchania, R.: Influence of BaTiO 3 on Magnetic and Transport Properties of La 0.7 Sr 0.3 MnO 3-BaTiO 3 Nanocomposite. J. Supercond. Nov. Magn. 32, 539 (2019)

  44. Nayek, C., Ray, M.K., Pal, A., Obaidat, I.M., Murugavel, P.: Magnetocaloric effect in (La 0.7 Sr 0.3 MnO 3) 1− x–(BaTiO 3) x solid solution spin-glass system. J. Mater. Sci. 53, 2405 (2018)

  45. Nayek, C., Samanta, S., Manna, K., Pokle, A., Nanda, B.R., Murugavel, P.: Spin-glass state in nanoparticulate (L a 0.7 S r 0.3 Mn O 3) 1− x (BaTi O 3) x solid solutions: Experimental and density-functional studies., Phys. Rev. B 93, 1 (2016)

  46. Phong, P.T., Manh, D.H., Dang, N.V., Hong, L.V., Lee, IJ.: Enhanced low-field-magnetoresistance and electro-magnetic behavior of La0. 7Sr0. 3MnO3/BaTiO3 composites. Phys. B Condens. Matter 407, 3774 (2012)

  47. Martin, C., Maignan, A., Hervieu, M., Autret, C., Raveau, B., Khomskii, DI.: Magnetic phase diagram of Ru-doped Sm 1− x Ca x MnO 3 manganites: Expansion of ferromagnetism and metallicity. 63, 1 (2001)

  48. Lu, C.L., Chen, X., Dong, S., Wang, K.F., Cai, H.L., Liu, J.M., Li, D., Zhang, Z.D.: Ru-doping-induced ferromagnetism in charge-ordered La 0.4 Ca 0.6 MnO 3. Phys. Rev. B - Condens. Matter Mater. Phys. 79, 1 (2009)

  49. Hébert, S., Maignan, A., Martin, C., Raveau, B.: Important role of impurity eg levels on the ground state of Mn-site doped manganites. Solid State Commun. 121, 229 (2002)

    Article  ADS  Google Scholar 

  50. Alagoz, H.S., Živković, I., Mahmud, S.T., Saber, M.M., Perrin, G., Shandro, J., Khan, M., Zhang, Y., Egilmez, M., Jung, J., Chow, K.H. Competing A‐site and B‐site doping effects on magneto‐transport of RE0. 55 Sr0. 45 Mn1− x Rux O3 manganites in the vicinity of the SGI and FMM border. Phys. Status Solidi Basic Res. 250, (2013)

  51. Egilmez, M., Isaac, I., Lawrie, D.D., Chow, K.H., Jung, J.: Oxygen-isotope exchange and cation disorder effects on magneto-transport properties of (Sm 1-y Gd y) 0.55 Sr 0.45 MnO 3. J. Mater. Chem. 18, (2008)

  52. Alagoz, H.S., Živković, I., Chow, K.H., Jung, J.: Non-percolating small metallic clusters and sharp suppression of metallicity in RE 0.55 Sr 0.45 Mn 1− x Ru x O 3 manganites. Phys. Chem. Chem. Phys. 20, 2431 (2018)

  53. Ivanov, V.Y., Mukhin, A.A., Prokhorov, A.S., Balbashov, A.M.: Phase transitions in Sm1–xSrxMnO3 single crystals (0≤ x≤ 0.8). Phys. Status Solidi Basic Res. 236, 445 (2003)

  54. Rivadulla, F., López-Quintela, M.A., Rivas, J.: Origin of the glassy magnetic behavior of the phase segregated state of the perovskites. Phys. Rev. Lett. 93, 1 (2004)

    Article  Google Scholar 

  55. Khomskii, D., Khomskii, L.: Fine mist versus large droplets in phase separated manganites. Phys. Rev. B - Condens. Matter Mater. Phys. 67, 4 (2003)

  56. Zhang, L., Israel, C., Biswas, A., Greene, R.L., de Lozanne, A.: Direct observation of percolation in a manganite thin film. Science 298(80), 805 (2002)

  57. Rodriguez-Martinez, L.M., Attfield, J.P.: Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B - Condens. Matter Mater. Phys. 54, R15622 (1996)

Download references

Acknowledgements

This research was partially supported by NSERC. I.Z. acknowledges the support from the Croatian Science Foundation.

Funding

M.E was supported by AUS Faculty Research grants (2018–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Egilmez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egilmez, M., Mahmud, S.T., Alagoz, H.S. et al. Quenched Disorder–Controlled Resistive Relaxation in Near-Half-Doped Manganite Systems. J Supercond Nov Magn 35, 115–124 (2022). https://doi.org/10.1007/s10948-021-05986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05986-9

Keywords

Navigation