Skip to main content
Log in

First-Principles Calculations of Structural, Electronic, Optical, and Thermoelectric Properties of LuNiBi and LuNiSb Half-Heusler

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, electronic, optical, and thermo-electric properties of LuNiBi and LuNiSb Half-Heusler have been studied using a full potential linearized augmented plane-wave (FP-LAPW) method. The results of the calculations presented in this work were obtained through the use of different approximations GGA-PBE, GGA-PBEsol, GGA-WC, and mBJ-GGA. The electronic band structures exhibit that the LuNiBi and LuNiSb alloys have a small indirect gaps in the valence band and the conduction band at points Г and X, revealing the semiconductor character in both compounds. The complex dielectric function ε (ω), optical conductivity σ (ω), extinction coefficient к (ω), refractive index n (ω), and reflectivity R (ω) as a function of photon energy are calculated using mBJ-GGA approximation, that is yielding results in good accordance with available experimental data. On the other hand, the variations of the thermal conductivity, power factor, figure of merit ZT, Seebeck coefficient, and electrical conductivity, as a function of temperature, have been investigated. Most of the optical and thermoelectric properties of LuNiSb and LuNiBi materials are not available in the literature; this makes the present work as a detailed comparative study between both compounds and opens the path for other future accurate theoretical studies to find the promising substitute for the interesting and more efficient thermoelectric device in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blaha, P., et al.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties, Inst. Vienna Univ. of Technology, Physical and Theoretical Chemistry (2001)

    Google Scholar 

  2. Larson, P., et al.: Electronic structure of rare-earth nickel pnictides: narrow-gap thermoelectric materials. Phys. Rev. B 59, 15660 (1999)

    Article  ADS  Google Scholar 

  3. Casper, F.: Structure and properties of intermetallic ternary rare earth compounds. (2008)

  4. Karla, I., Pierre, J., Ouladdiaf, B.: Magnetic structures of RNiSb compounds (R= rare earths) investigated by neutron diffraction. Phys. B 253, 215–221 (1998)

    Article  ADS  Google Scholar 

  5. Haase, M.G., et al.: Equiatomic rare earth (Ln) transition metal antimonides LnTSb (T = Rh, lr) and bismuthides LnTBi (T = Rh, Ni, Pd, Pt). J. Solid State Chem. 168, 18–27 (2002)

    Article  ADS  Google Scholar 

  6. Chen, J., et al.: Structural and magnetotransport properties of topological trivial LuNiBi single crystals. J. Alloy. Compd. 784, 822–826 (2019)

    Article  Google Scholar 

  7. Synoradzki, K., Ciesielski, K., Kępiński, L., Kaczorowski, D.: Effect of secondary lunisn phase on thermoelectric properties of Half-Heusler alloy Lunisb. Materials Today: Proceedings 8, 567–572 (2019)

    Google Scholar 

  8. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Physical review 136, B864 (1964)

    ADS  Google Scholar 

  9. Perdew, J.P., et al.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  10. Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Physical Review B. 73, 235116 (2006)

  11. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  12. Murnaghan, F.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  13. Casper, F., Felser, C.: Magnetic and electronic properties of Renibi (Re = Pr, Sm, Gd–Tm, Lu) compounds. Z. Anorg. Allg. Chem. 634, 2418–2422 (2008)

    Article  Google Scholar 

  14. Narimani, M., Nourbakhsh, Z.: Topological phase and optical properties of Lunibi bulk and nano-layer. Thin Solid Films 634, 112–120 (2017)

    Article  ADS  Google Scholar 

  15. Winiarski, M.J., Bilińska, K.: High Thermoelectric power factors of P-type Half-Heusler alloys Ynisb, Lunisb, Ypdsb, and Lupdsb. Intermetallics 108, 55–60 (2019)

    Article  Google Scholar 

  16. WINIARSKIA, M., Bilinska, K.: Power Factors of P-Type Half-Heusler alloys Scnibi, Ynibi, and Lunibi by ab initio calculations. Acta Physica Polonica, A. , 138 (2020)

  17. Saini, S.M.: Structural, electronic and thermoelectric performance of narrow gap Lunisb Half Heusler compound: potential thermoelectric material. Physica B: Condensed Matter. 610, 412823 (2021)

  18. Touia, A., Ameri, M., Ameri, I.: Synthesis, crystal structure and physical properties of the thulium filled skutterudite TmFe4P12 under the effect of the pressure: LDA and LSDA calculation. Optik 126, 3253–3259 (2015)

    Article  ADS  Google Scholar 

  19. Cui, S., et al.: High-pressure structural, electronic and optical properties of KMgF3: a first-principles study. J. Alloy. Compd. 484, 597–600 (2009)

    Article  Google Scholar 

  20. Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  ADS  Google Scholar 

  21. Aydin, S., et al.: Effect of pressure on structural, electronic, mechanical and optical properties of ruthenium diboride with oP 12-type structure. Indian J. Phys. 90, 767–779 (2016)

    Article  ADS  Google Scholar 

  22. Kramers, H.: Atti Congr. Intern. Fisico como, (1927)

  23. Kronig, R.d.L.: On the theory of dispersion of x-rays. Josa. 12, 547–557 (1926)

  24. Ciftci, Y.O., Evecen, M.: First principle study of structural, electronic, mechanical, dynamic and optical properties of half-Heusler compound LiScSi under pressure. Phase Transitions 91, 1206–1222 (2018)

    Article  Google Scholar 

  25. Wei, J., Wang, G.: Thermoelectric and optical properties of half-Heusler compound TaCoSn: a first-principle study. J. Alloy. Compd. 757, 118–123 (2018)

    Article  Google Scholar 

  26. Kaur, K., Kumar, R.: Giant thermoelectric performance of novel TaIrSn Half Heusler compound. Phys. Lett. A 381, 3760–3765 (2017)

    Article  ADS  Google Scholar 

  27. Yusufu, A., et al.: Thermoelectric properties of Ag1− x GaTe2 with chalcopyrite structure. Applied Physics Letters. 99, 061902 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Touia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touia, A., Benyahia, K. & Tekin, A. First-Principles Calculations of Structural, Electronic, Optical, and Thermoelectric Properties of LuNiBi and LuNiSb Half-Heusler. J Supercond Nov Magn 34, 2689–2698 (2021). https://doi.org/10.1007/s10948-021-05970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05970-3

Keywords

Navigation