Skip to main content
Log in

(Cu0.5Tl0.5)(Ba2–yCay)(CaMg)(Cu3–x Znx)O10–δ (y = 0, 1; x = 0, 2, 2.5, 2.8, 3) and (MxTl1–x)(BaCa)(CaMg) Zn3O10–δ (M = Ag, K; x = 0, 0.5) Superconductors for the Studies the role of Spin Density Waves in the Mechanism of High Tc Superconductivity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

(Cu0.5Tl0.5)(Ba2–yCay)(CaMg)(Cu3–xZnx)O10–δ (y = 0, 1; x = 0, 2, 2.5, 2.8, 3) and (MxTl1–x)(BaCa)(CaMg) Zn3O10–δ (M = Ag, K; x = 0, 0.5) superconductors are synthesized for the studies of role of spin density waves in the mechanism of high Tc superconductivity. Such compounds are synthesized by reducing the thickness of the charge reservoir layers and distance among various CuO2/ZnO2 planes; decreasing the thickness of charge reservoir layers (CRLs) and distance among the various CuO2/ZnO2 planes increase the spin–spin interaction. All such samples were prepared by a two-step solid-state reaction (SSR) method at 860 °C and have shown orthorhombic crystal structure in which volume (V) of the unit cell suppresses with the doping of Ca, showing that partial substitution of Ca at the Ba site suppresses the thickness of CRL that in turn promotes a decrease in c-axis length and volume of the unit cell. The phonon modes related to the vibrations of apical and planar oxygen atoms are softened with doping of Ca and Zn in the final compounds. Metallic variations of resistivity (ρ) from room temperature down to the onset of superconductivity are a typical feature of these samples in which the Tc(onset) and Tc(R = 0) suppress with the doping of Ca, Mg, and Zn in the final compounds. Surprisingly, the samples with all the CuO2 planes replaced by ZnO2 planes have shown superconducting properties. To confirm the role of Cu(3d9) atoms in superconductivity, we have synthesized (MxTl1–x)(BaCa)(CaMg) Zn3O10–δ (M = Ag, K; x = 0, 0.5) samples. To our surprise, such samples have shown semiconducting behavior and no sign of superconductivity down to 77 K which demonstrated that the presence of Cu(3d9) atoms either in CRLs or ZnO2 planes is essential for the mechanism of high Tc superconductivity. These studies have shown the unequivocal role of small spin-carrying Cu-atoms in the mechanism of high Tc superconductivity. Fluctuating spins of Cu(3d9) atoms in the CuO2 plane generate spin waves, and hence, their interaction with charge density waves develop long-range phase coherence among the carriers that result in high-temperature superconductivity in oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. Varandani, D., Narlikar, V.: Phys. Rev. B 50, 462–469 (1994)

    ADS  Google Scholar 

  2. Davydov, S., Kruchinin, S.P.: Physics C 235, 2611–2612 (1994)

    Google Scholar 

  3. Kruchinin, S.P., Yaremko, A.M.: Supercond. Sci. Technol. 11, 4 (1998)

    Article  ADS  Google Scholar 

  4. Akhiezer, A.I., Pomeranchuk, I.Y.: On the interaction between conductivity electrons in ferromagnetics. Zh. Eksp. Teor. Fiz. 36, 819 (1959)

    Google Scholar 

  5. Akhiezer, A. I., Bar’yakhtar, V. G., Peletminskii, S. V.: Spin waves, p. 369. North-Holland, Amsterdam (1968)

  6. Pines, D.: Spin fluctuations and high temperature superconductivity the antiferromagnetically correlated oxides: YBaCuO, LaSrCuO. Physica C 185–189, 120 (1991)

    Article  ADS  Google Scholar 

  7. Monthoux, P., Balatsky, A.V., Pines, D.: Toward a theory of high temperature superconductivity in the antiferromagnetically correlated cuprates oxides. Phys. Rev. Lett. 67, 3448 (1991)

    Article  ADS  Google Scholar 

  8. Balatsky, A.V., Vekhter, I.V., Zhu, J.X.: Impurity-induced state in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373 (2008)

    Article  ADS  Google Scholar 

  9. Levi, B.G.: In high-Tc superconductors, is d-wave the new wave. Phys. Today 5, 17 (1993)

    Google Scholar 

  10. Manske, D.: Theory of unconventional superconductors. Springer, Heidelberg (2004)

    Book  Google Scholar 

  11. Isber, S., Awad, R., Abou-Aly, A.I., Tabbal, M., Kaouar, J.M.: Supercond. Sci. Technol. 18, 311–316 (2005)

    Article  ADS  Google Scholar 

  12. Poddar, A., Bandyopadhyay, B., Chattopadhyay, B.: Phys. C Supercond. Its Appl. 390, 120–126 (2003)

    Article  ADS  Google Scholar 

  13. Myo, P.B., Feiner, I., Nowik, I., Bauminger, E.R.: D. Hechel 65, 1945–1948 (1990)

    Google Scholar 

  14. Vieira, V.N.,  Pureur, P., Schaf, J.: Phys. Rev. B - Condens. Matter Mater. Phys. 66,  1–11 (2002)

  15. Tsuei, C.C., Kirtley, J.R.: Phys. C Supercond. Its Appl. 341, 1625–1628 (2000)

    Article  ADS  Google Scholar 

  16. Wei, J.Y.T., Yeh, N.C., Garrigus, D.F., Strasik, M.: Phys. Rev. Lett. 81, 2542–2545 (1998)

    Article  ADS  Google Scholar 

  17. Müller, C.R., Janowitz, M., Schneider, R.S., Unger, A., Krapf, H., Dwelk, A., Müller, L., Dudy, R., Manzke, C.R., Ast, H., Höchst, J.: Supercond. Nov. Magn. 15, 147–152 (2002)

  18. Ahmad, S., Khan, N.A., Khurram, A.A., Mumtaz, M.: Physica B 457, 113–116 (2015)

  19. Zubair, M., Khan, N.A.: J Supercond Nov Magn 25, 1719–1724 (2012)

  20. Essaleh, L., Wasim, S.M., Marín, G., Rincón,  C., Amhil, S., Galibert, J.: J. Appl. Phys. 122, 015702 (2017)

  21. Gupta, A.K. et al.:Solid State Sci. 9, 817–823 (2007)

  22. Aslamazov, L.G., Larkin, A.L.: Phys. Lett. A 26, 238 (1968)

    Article  ADS  Google Scholar 

  23. Lawrence, W.E., Doniach, S.: In: Eizo, Kanda (ed.), Proceedings of the twelfth international conference on low temperature physics, p. 361. Keigaku, Tokyo (1971)

  24. Khan, N.A., Rahim, M., Mumtaz, M.: Phys. C Supercond. Appl. 478, 32–37 (2012)

    Article  ADS  Google Scholar 

  25. Asad Raza, M.: Rahim, Nawazish A. Khan, Ceramics International 39, 4349–4354 (2013)

    Article  Google Scholar 

  26. Hussain, J. Ali, N.A., Khan, A., Raza, J.: Alloy. Comp. 817,  152697 (2020)

  27. Ali, J., Hussain, S., Khan, N.A., Raza, A.: J. Supercond. Nov. Magn 33, 1557–1939 (2019)

    Google Scholar 

  28. Khan, N.A., Khurram, A.A.: Appl. Phys. Lett. 86, 152502 (2005)

  29. Abou, A.I. Aly, I.H., Ibrahim, R., Awad, A., El-Harizy, A., Khalaf, J.: Supercond. Nov. Magnetism 23,  1325–1332 (2010)

  30. Rojas Sarmiento, M.P., Oribe Laverde, M.A., Vera Lopez, E., Landinez, D.A., Roa Rojas, J.: Conductivity, Phys. B Condens. Matter 398,  360–363 (2007)

  31. Ihara, H., Iyo, A., Tanaka, K., Tokiwa, K., Ishida, K., Terada, N., Tokumoto, M., Sekita, Y., Tsukamoto, T., Watanabe, T., Umeda, M.: Phys. C Supercond. Appl. 282, 1973–1974 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anila Kanwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwal, A., Khan, N.A. (Cu0.5Tl0.5)(Ba2–yCay)(CaMg)(Cu3–x Znx)O10–δ (y = 0, 1; x = 0, 2, 2.5, 2.8, 3) and (MxTl1–x)(BaCa)(CaMg) Zn3O10–δ (M = Ag, K; x = 0, 0.5) Superconductors for the Studies the role of Spin Density Waves in the Mechanism of High Tc Superconductivity. J Supercond Nov Magn 34, 3163–3174 (2021). https://doi.org/10.1007/s10948-021-05960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05960-5

Keywords

Navigation