Skip to main content

Advertisement

Log in

Doxorubicin Embedded Polyvinylpyrrolidone-Coated Fe3O4 Nanoparticles for Targeted Drug Delivery System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In novel drug delivery systems, polymeric materials are combined with drugs or active agents where the drug is released in the presence of external stimuli like pH, temperature, magnetic field, etc. Magnetic drug delivery systems can be used in cancer treatment. Fe3O4 nanoparticles have been applied in biomedical applications due to their biocompatibility and biodegradability properties. In this study, magnetic nanocomposites were developed and demonstrated to be responsive to the magnetic field. Fe3O4 nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were modified by (3-aminopropyl) triethoxysilane (APTES) (Fe3O4@SiO2) and coated with polyvinylpyrrolidone (PVP). Magnetic properties of the nanoparticles and hydrogel were characterized by vibrating sample magnetometer (VSM). In the present study, doxorubicin (DOX) is used as a cancer drug, loaded in the nanocomposite. The attachment of Dox, PVP to the Fe3O4 nanoparticles was confirmed by FTIR analysis. Different characterizations were carried out, such as swelling measurements, scanning electron microscopy (SEM), and X-ray diffraction (XRD) as well as rheological parameters. The drug release from the untreated and treated nanoparticles was investigated in two different pHs by using UV–Vis. Our findings show that the rate of drug release is higher at pH = 5 than pH = 7.4. Altogether, the magnetic nanocomposite hydrogels are promising products for magnetically targeted drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Liu, T.Y., et al.: Preparation and characterization of smart magnetic hydrogels and its use for drug release. J. Magn. Magn. Mater. 304(1), 397–399 (2006)

    Article  Google Scholar 

  2. Liu, T.Y., et al.: Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14), 5974–5978 (2006)

    Article  Google Scholar 

  3. Uhrich, K.E., et al.: Polymeric systems for controlled drug release. Chem. Rev. 99(11), 3181–3198 (1999)

    Article  Google Scholar 

  4. Kim, S.W., Petersen, R.V., Feijen, J.: Polymeric drug delivery systems. Drug. Des. 10, 193–250 (2016)

    Google Scholar 

  5. Mali, A.D.: An updated review on transdermal drug delivery systems. Skin 8, 9 (2015)

    Google Scholar 

  6. Siegel, R.A., Rathbone M.J.: Overview of controlled release mechanisms. J. Fund. Appl. Controlled. Release. Drug. Del. 19–43 (2012)

  7. Peppas, N.A.: Biomedical applications of hydrogels handbook. Springer. Sci. Busi. Media. 1–15 (2010)

  8. Pourmanouchehri, Z., Jafarzadeh M., Kakaei, S., Sattarzadeh E.: Magnetic Nanocarrier Containing 68 Ga–DTPA Complex for Targeted Delivery of Doxorubicin. J. Inorg. Organomet. Polym. Mater. 28(5), 1980–1990 (2018)

  9. Khameneh, E.S., Amini, M.M., Kakaei, S., Khanchi, A.: Preparation of dual-modality yttrium-90 radiolabeled nanoparticles for therapeutic investigation. Radiochim. Acta. 106(11), 897–907 (2018)

    Article  Google Scholar 

  10. Sattarzadeh, E., Amini, M.M., Kakaei, S., Khanchi, A.: 68 Ga-radiolabeled magnetic nanoparticles for PET–MRI imaging. J. Radioanal. Nucl. Chem. 317(3), 1333–1339 (2018)

    Article  Google Scholar 

  11. SattarzadehKhameneh, E., Kakaei, S., Moharreri, M.M.: Synthesis and characterization of DTPA and DOTA modified Fe3O4@ SiO2 core-shell nanoparticles. Adv. Nanochem. 1(2), 62–65 (2019)

    Google Scholar 

  12. Sirousazar, M., et al.: Hydrogels: properties preparation characterization and biomedical applications in tissue engineering drug delivery and wound care. J. Adv. Healthc. Mater. 295–357 (2014)

  13. Satarkar, N.S., Biswal, D., Hilt, J.Z.: Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11), 2364–2371 (2010)

    Article  ADS  Google Scholar 

  14. Don, T.M., et al.: Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater. Chem. Phys. 107(2), 266–273 (2008)

    Article  ADS  Google Scholar 

  15. Zhao, W., et al.: In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromol 16(8), 2522–2528 (2015)

    Article  Google Scholar 

  16. Ammar, N.E.B., et al.: Study of agar proportions effect on a gamma ray synthesized hydrogel. J. Mater. Sci. Eng. A. 3(3–4), 88–100 (2016)

    Google Scholar 

  17. Tacar, O., Sriamornsak, P., Dass, C.R.: Doxorubicin: an update on anticancer molecular action toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 65(2), 157–170 (2013)

    Article  Google Scholar 

  18. Kayal, S., Ramanujan, R.: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. J. Mater. Sci. Eng. C. 30(3), 484–490 (2010)

    Article  Google Scholar 

  19. Chen, F.H., et al.: Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. J. Chem. Commun. 46(45), 8633–8635 (2010)

    Article  Google Scholar 

  20. Rose, P.A., et al.: Drug embedded PVP coated magnetic nanoparticles for targeted killing of breast cancer cells. Technol. Cancer. Res. Treat. 12(5), 463–472 (2013)

    Article  Google Scholar 

  21. Kandpal, N., et al.: Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Ind. Res. 73, 87–90 (2014)

    Google Scholar 

  22. Kim, K., et al.: Formation and surface modification of fe3o4 nanoparticles by co-precipitation and sol-gel method. J. Ind. Chem. Eng. 13(7), 1137 (2007)

    Google Scholar 

  23. Do Kim, K., et al.: Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J. Ind. Chem. Eng. 13(7), 1137–1141 (2007)

    Google Scholar 

  24. He, Y., et al.: Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J. Phys. D. Appl. Phys. 38(9), 1342 (2005)

    Article  ADS  Google Scholar 

  25. Foroutan, H., Rabbani, M.: Investigation of synthesis of PVP hydrogel by irradiation. Iran. J. Radiat. Res. 5(3), 131–136 (2007)

    Google Scholar 

  26. Jafarzadeh, M., et al.: Preparation of trifluoroacetic acid-immobilized Fe3O4@ SiO2–APTES nanocatalyst for synthesis of quinolines. J. Fluor. Chem. 178, 219–224 (2015)

    Article  Google Scholar 

  27. Akbarzadeh, A., et al.: Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomed. 7, 511 (2012)

    Google Scholar 

  28. Xu, L., et al.: Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. J. Colloids. Surf. A. Physicochem. Eng. Asp. 350(1), 8–12 (2009)

    Article  Google Scholar 

  29. White, L., Tripp, C.: Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces. J. Colloid. Interface. Sci. 232(2), 400–407 (2000)

    Article  ADS  Google Scholar 

  30. Heiney, P.A., et al.: Structure and growth of chromophore-functionalized (3-aminopropyl) triethoxysilane self-assembled on silicon. Langmuir 16(6), 2651–2657 (2000)

    Article  Google Scholar 

  31. Saif, B., et al.: Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J. Biomater. Nanobiotechnol. 6(04), 267 (2015)

    Article  Google Scholar 

  32. Khosroshahi, M., Ghazanfari, L.: Amino surface modification of Fe3O4/SiO2 nanoparticles for bioengineering applications. J. Surf. Eng. 27(8), 508–573 (2011)

    Article  Google Scholar 

  33. Lukins, R.E.: Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states. AIP. Adv. 7(5), 056801 (2017)

  34. Mahdavinia, G.R., Etemadi, H.: In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. J. Mater. Sci. Eng. C. 45, 250–260 (2014)

    Article  Google Scholar 

  35. Arsalani, N., Fattahi, H., Nazarpoor, M.: Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express. Polym. Lett. 4(6), 329–338 (2010)

    Article  Google Scholar 

  36. Lu, C.H., et al.: Design and synthesis of Fe3O4@SiO2 core-shell nanomaterials. Integr. Ferroelectr. 182(1), 46–52 (2017)

    Article  Google Scholar 

  37. Eid, M., et al.: Radiation synthesis and characterization of poly (vinyl alcohol)/poly (N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J. Polym. Res. 19(3), 9835 (2012)

    Article  Google Scholar 

  38. Vimala, K., et al.: Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly (acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr. Polym. 75(3), 463–471 (2009)

    Article  Google Scholar 

  39. Jayakumar, O.D., et al.: Water dispersible Fe3O4 nanoparticles carrying doxorubicin for cancer therapy. J. Nanosci. Nanotechnol. 9(11), 6344–6348 (2009)

    Article  Google Scholar 

  40. Ghaffari, M., Ehsani, M., Khonakdar, H.A.: Morphology rheological and protective properties of epoxy/nano-glassflake systems. Prog. Org. Coat. 77(1), 124–130 (2014)

    Article  Google Scholar 

  41. Abdurrahmanoglu, S., Okay, O.: Rheological behavior of polymer–clay nanocomposite hydrogels: Effect of nanoscale interactions. J. Appl. Polym. Sci. 116(4), 2328–2335 (2010)

    Google Scholar 

  42. Killion, J.A., et al.: Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation. Mater. Sci. Eng. C. 33(7), 4203–4212 (2013)

    Article  Google Scholar 

  43. Hosseini, H., Tenhu, H., Hietala, S.: Rheological properties of thermoresponsive nanocomposite hydrogels. J. Appl. Polym. Sci. 133(11) (2016)

  44. Rescignano, N., et al.: Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications. J. Polym. Int. 65(8), 921–926 (2016)

    Article  Google Scholar 

  45. Durán-Valencia, C., et al.: Development of enhanced nanocomposite preformed particle gels for conformance control in high-temperature and high-salinity oil reservoirs. Polym. J. 46(5), 277 (2014)

    Article  Google Scholar 

  46. Demeter, M., et al.: Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat. Phys. Chem. 131, 51–59 (2017)

    Article  ADS  Google Scholar 

  47. Jovanović, Ž., et al.: Bioreactor validation and biocompatibility of Ag/poly (N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloid. Surf. B. 105, 230–235 (2013)

    Article  Google Scholar 

  48. Jovanović, Ž., et al.: Structural and optical characteristics of silver/poly (N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation. Radiat. Phys. Chem. 81(11), 1720–1728 (2012)

    Article  ADS  Google Scholar 

  49. Elbaz, N.M., et al.: Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci. Rep. 6, 30729 (2016)

    Article  ADS  Google Scholar 

  50. Roy, N., Saha, N.: PVP-based hydrogels: synthesis properties and applications. J. Hydrogel. Synth. Character. Appl. 227–252 (2012)

Download references

Acknowledgements

The authors are grateful to Radiation Application Research School, Foundation of Nuclear Science and Technology Research Institute and Golestan University for supporting this research work. We are also grateful to Dr. Naser Zarsav for his valuable comments and thoroughly editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghaffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehteshamzadeh, T., Kakaei, S., Ghaffari, M. et al. Doxorubicin Embedded Polyvinylpyrrolidone-Coated Fe3O4 Nanoparticles for Targeted Drug Delivery System. J Supercond Nov Magn 34, 3345–3360 (2021). https://doi.org/10.1007/s10948-021-05952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05952-5

Keywords

Navigation