We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Investigation on Magnetic and Magnetocaloric Properties of DySe2 | SpringerLink

Investigation on Magnetic and Magnetocaloric Properties of DySe2


The magnetization measurements have been performed to bring out the magnetic and magnetocaloric properties of polycrystalline DySe2 system synthesized by solid state reaction and duly characterized by X-ray diffraction. Room temperature XRD analysis reveals tetragonal structure for this system. Temperature-dependent magnetization measurements display paramagnetic to antiferromagnetic transition at the Neel temperature (TN) ~ 4.7 K. The TN exhibits systematic decrease with increase in magnetic field. Isothermal magnetization data exhibits a field-induced meta-magnetic transition below TN. The onset magnetic field for the meta-magnetic transition decreases with increase in temperature. Arrot plot analysis reveals that both the paramagnetic to antiferromagnetic and the meta-magnetic transitions are first order in nature. Isothermal magnetic entropy change (ΔS) with temperature exhibits negative nonmonotonic behavior with a peak (ΔSmax) for field change ΔH > 10 kOe. The value of ΔSmax is found to be ~ 11.7 J/kg-K for a field change of 70 kOe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Tishin, A.M., Spichkin, Y.I.: The magnetocaloric effect and its applicationsBristol: Ins. Phy. (2003)

  2. 2.

    GschneidnerJr, K.A., Pecharsky, V., Tsokol, A.: Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  3. 3.

    Franco, V., Blázquez, J., Ipus, J., Law, J., Moreno-Ramírez, L., Conde, A.: Prog. Mater Sci. 93, 112 (2018)

    Article  Google Scholar 

  4. 4.

    Gschneidner, K.A., Jr., Pecharsky, V.K.: J. Rare Earths 24, 641 (2006)

    Article  Google Scholar 

  5. 5.

    Huang, B., Lai, J.W., Zeng, D.C., Zheng, Z.G., Harrison, B., Oort, A., van Dijk, N.H., Brück, E.: Int. J. Refrig 104, 42 (2019)

    Article  Google Scholar 

  6. 6.

    Zhang, H., Shen, J., Gong, M.-Q., Wu, J.-F.: J. Appl. Phys. 107, 09A937 (2010)

    Article  Google Scholar 

  7. 7.

    Chen, W.: Cryogenics 62, 206 (2014)

    Article  ADS  Google Scholar 

  8. 8.

    Zhang, H., Sun, Y.J., Niu, E., Yang, L.H., Shen, J., Hu, F.X., Sun, J.R. and Shen, B.G.: Appl. Phy. Lett. 103, 202412 (2013)

  9. 9.

    Jeong, S.: Cryogenics 62, 193 (2014)

    Article  ADS  Google Scholar 

  10. 10.

    Numazawa, T., Kamiya, K., Utaki, T., Matsumoto, K.: Cryogenics 62, 185 (2014)

    Article  ADS  Google Scholar 

  11. 11.

    Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V., Gschneidner, K., Osborne, M., Anderson, I.: In Advances in cryogenic engineering (Springer) 1759 (1998)

  12. 12.

    Tishin, A.M., Spichkin, Y.I., Zverev, V.I., Egolf, P.W.: Int. J. Refrig 68, 177 (2016)

    Article  Google Scholar 

  13. 13.

    Tishin, A.M.: Cryogenics 30, 127 (1990)

    Article  ADS  Google Scholar 

  14. 14.

    Bean, C.P., Rodbell, D.S.: Phys. Rev. 126, 104 (1962)

    Article  ADS  Google Scholar 

  15. 15.

    Von Ranke, P.J., Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M.G., Gandra, F.C.G., De Oliveira, N.A.: Phy Rev B 73, 014415 (2006)

  16. 16.

    Li, D.X., Yamamura, T., Nimori, S., Homma, Y., Honda, F., Aoki, D.: Appl Phy Lett 102, 152409 (2013)

  17. 17.

    Li, D.X., Yamamura, T., Nimori, S., Homma, Y., Honda, F., Haga, Y., Aoki, D.: Solid State Commun. 193, 6 (2014)

    Article  ADS  Google Scholar 

  18. 18.

    Bredy, P., Seyfert, P.: Cryogenics 28, 605 (1988)

    Article  ADS  Google Scholar 

  19. 19.

    Vinod, K., Sathyanarayana, A.T., Sarguna, R.M., Mani, A.: Mater Res Expr 6, 106123 (2019)

  20. 20.

    Ahn, K., Pecharsky, A.O., Gschneidner Jr, K.A., Pecharsky, V.K.: J Appl Phy 97, 063901 (2005)

  21. 21.

    Holtzberg, F., McGuire, T.R., Methfessel, S., Suits, J.C.: J. Appl. Phys. 35, 1033 (1964)

    Article  ADS  Google Scholar 

  22. 22.

    Pokrzywnicki, S.: J. Alloy. Compd. 225, 163 (1995)

    Article  Google Scholar 

  23. 23.

    Pokrzywnicki, S., Duczmal, M., Pawlak, L., Nenkov, K.: Acta Phys. Pol., A 2, 351 (1997)

    Article  ADS  Google Scholar 

  24. 24.

    Wang, R., Steinfink, H.: Inorg. Chem. 6, 1685 (1967)

    Article  Google Scholar 

  25. 25.

    Wang, R., Steinfink, H., Bradley, W.F.: Inorg. Chem. 5, 142 (1966)

    Article  Google Scholar 

  26. 26.

    Guittard, M., Flahaut, J.: in Synthesis of Lanthanide and actinide compounds (Springer) 321 (1991)

  27. 27.

    Banerjee, B.: Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  28. 28.

    Biswas, A., Chandra, S., Samanta, T., Phan, M.H., Das, I., Srikanth, H.: J. Appl. Phys. 113, 17A902 (2013)

    Article  Google Scholar 

  29. 29.

    Li, L., Kadonaga, M., Huo, D., Qian, Z.: J Appl Phy 110, 043912 (2011)

  30. 30.

    Samanta, T., Das, I., Banerjee, S.: Appl Phy Lett 91, 152506 (2007)

  31. 31.

    Shen, J., Xu, Z.-Y., Zhang, H., Zheng, X.-Q., Wu, J.-F., Hu, F.-X., Sun, J.-R., Shen, B.-G.: J. Magn. Magn. Mater. 323, 2949 (2011)

    Article  ADS  Google Scholar 

  32. 32.

    Shen, J., Zhao, J.-L., Hu, F.-X., Rao, G.-H., Liu, G.-Y., Wu, J.-F., Li, Y.-X., Sun, J.-R., Shen, B.-G.: Appl. Phys. A 99, 853 (2010)

    Article  ADS  Google Scholar 

Download references


The authors acknowledge Dr. R. M. Sarguna, MSG/IGACR for the powder XRD measurements. The authors acknowledge UGC-DAE-CSR node at Kokilamedu for providing access to VSM facility.

Author information



Corresponding author

Correspondence to A. T. Sathyanarayana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sathyanarayana, A.T., Vinod, K. & Mani, A. Investigation on Magnetic and Magnetocaloric Properties of DySe2. J Supercond Nov Magn (2021). https://doi.org/10.1007/s10948-021-05936-5

Download citation


  • Magnetization
  • Entropy
  • First-order transition