We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The Role of Buffer Layer on the Performance and Uniformity Improvement of Long-Length HTS YBa2Cu3O7−x Tapes Derived by MOD | SpringerLink

The Role of Buffer Layer on the Performance and Uniformity Improvement of Long-Length HTS YBa2Cu3O7−x Tapes Derived by MOD

Abstract

The present work reports our efforts to enhance the performance and uniformity for the long tapes of metal–organic deposition YBa2Cu3O7−x (MOD-YBCO) layer on ion-beam-assisted deposition MgO (IBAD-MgO) template. Reflection High-energy electron diffraction (RHEED) is employed to realize the in-situ growth monitor of IBAD-MgO, as well as the correlation between the quantitative RHEED peaks and in-plane texture of Epi-MgO identified by XRD, which is an effective guide to improve the uniformity and performance of long YBCO tapes. In addition, the surface of the LMO layer during the magnetron sputtering process is improved via controlling the O2 flux, and then the critical-current density (Jc) of YBCO films has been improved. By optimizing the texture of the MgO layer and precisely controlling the LMO layer growth conditions, the performance and uniformity of YBCO-coated conductors grown by metal–organic deposition (MOD) have been greatly enhanced. The superconducting current-carrying capacities of 12-mm-wide tapes have upgraded steadily from 400–500 A to 500–550 A in past 3 years. The laminated CC tapes with current-carrying capacities of 150–170 A per 4-mm width show good uniformity and high quality along 500-m length, implying being promising for various commercial power applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bednorz, J.G., Müller, K.A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift Für Phys. B Condens. Matter. 64, 189–193 (1986). https://doi.org/10.1007/BF01303701

    ADS  Article  Google Scholar 

  2. 2.

    Bondarenko, S.I., Koverya, V.P., Krevsun, A.V., Link, S.I.: High-temperature superconductors of the family (RE)Ba2Cu3O7−δ and their application (Review Article). Low Temp. Phys. 43, 1125–1151 (2017). https://doi.org/10.1063/1.5008405

    ADS  Article  Google Scholar 

  3. 3.

    Fietz, W.H., Barth, C., Drotziger, S., Goldacker, W., Heller, R., Schlachter, S.I., Weiss, K.: Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Eng. Des. 88, 440–445 (2013). https://doi.org/10.1016/j.fusengdes.2013.03.059

    Article  Google Scholar 

  4. 4.

    van der Laan, D.C., Goodrich, L.F., Haugan, T.J.: High-current dc power transmission in flexible REBa2Cu3O7−δ coated conductor cables. Supercond. Sci. Technol. 25, 014003 (2012). https://doi.org/10.1088/0953-2048/25/1/014003

    ADS  Article  Google Scholar 

  5. 5.

    Hahn, S., Kim K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, K.R., Noguchi, S., Jaroszynski, J., Larbalestier, D.C.: 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet, Nature. 570, 496–499 (2019) . https://doi.org/10.1038/s41586-019-1293-1

  6. 6.

    Awaji, S., Imai, Y., Takahashi, K., Okada, T., Badel, A., Miyazaki, H., Hanai, S., Ioka, S.: Field stability analysis of 25 T cryogen-free superconducting magnet and upgrade plans for 30 T system at HFLSM, IMR, Tohoku University. IEEE Trans. Appl. Supercond. 29, 1–5 (2019). https://doi.org/10.1109/TASC.2019.2898699

    Article  Google Scholar 

  7. 7.

    Ballarino, A.: High temperature superconducting current leads for the large hadron collider. IEEE Trans. Appiled Supercond. 9, 523–526 (1999). https://doi.org/10.1109/77.783350

    ADS  Article  Google Scholar 

  8. 8.

    Wilson, M.N.: Superconductivity and accelerators: the good companions. IEEE Trans. Appiled Supercond. 9, 111–121 (1999). https://doi.org/10.1109/77.783250

    ADS  Article  Google Scholar 

  9. 9.

    Bruzzone, P., Sedlak, K., Uglietti, D., Bykovsky, N., Muzzi, L., Marzi, G., Celentano, G., Corte, A.: Si Turtù, M Seri, LTS and HTS high current conductor development for DEMO. Fusion Eng. Des. 96, 77–82 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.150

    Article  Google Scholar 

  10. 10.

    Heller, R., Fietz, W.H., Kienzler, A., Lietzow, R.: High temperature superconductor current leads for fusion machines. Fusion Eng. Des. 86, 1422–1426 (2011). https://doi.org/10.1016/j.fusengdes.2010.12.077

    Article  Google Scholar 

  11. 11.

    Yang, P., Wang, Y., Qiu, D., Chang, T., Ma, H., Zhu, J., Jin, Z., Hong, Z.: Design and Fabrication of a 1-MW High-temperature superconductor DC induction heater. IEEE Trans. Appl. Supercond. 28, 1–5 (2018). https://doi.org/10.1109/TASC.2018.2810498

    Article  Google Scholar 

  12. 12.

    Choi, J., Kim, S.K., Kim, S., Sim, K., Park, M., Yu, I.K.: Characteristic analysis of a sample HTS magnet for design of a 300 kW HTS DC induction furnace. IEEE Trans. Appl. Supercond. 26, 1–5 (2016). https://doi.org/10.1109/TASC.2016.2524686

    Article  Google Scholar 

  13. 13.

    Song, X., Mijatovic, N., Kellers, J., Buhrer, C., Rebsdorf, A.V., Hansen, J., Christensen, M., Krause, J., Wiezoreck, J., Putz, H., Holboll, J.: A full-size high-temperature superconducting coil employed in a wind turbine generator setup. IEEE Trans. Appl. Supercond. 27, 1–5 (2017). https://doi.org/10.1109/TASC.2017.2656627

    Article  Google Scholar 

  14. 14.

    Song, X., Bergen, A., Winkler, T., Wessel, S., Ter Brake, M., Kellers, J., Putz, H., Bauer, M., Kyling, H., Boy, H., Seitz, E., Buhrer, C., Brutsaert, P., Krause, J., Ammar, A., Wiezoreck, J., Hansen, J., Rebsdorf, A.V., Dhalle, M.: Designing and basic experimental validation of the world’s first MW-class direct-drive superconducting wind turbine generator. IEEE Trans. Energy Convers. 34(2), 218–2225 (2019). https://doi.org/10.1109/TEC.2019.2927307

    Article  Google Scholar 

  15. 15.

    van der Laan, D.C., Lu, X.F., Goodrich, L.F.: Compact GdBa2Cu3O7−δ coated conductor cables for electric power transmission and magnet applications. Supercond. Sci. Technol. 24, 042001 (2011). https://doi.org/10.1088/0953-2048/24/4/042001

    ADS  Article  Google Scholar 

  16. 16.

    Na, J.B., Sung, H.G., Choi, C.Y., Jang, Y., Hun, Y.: Design of 23kV 50MVA class HTS cable in South Korea. J. Phys. Conf. Ser. 1054, 012073 (2018). https://doi.org/10.1088/1742-6596/1054/1/012073

    Article  Google Scholar 

  17. 17.

    Iijima, Y., Matsumoto, K.: High-temperature-superconductor coated conductors: technical progress in Japan. Supercond. Sci. Technol. 13, 68–81 (2000). https://doi.org/10.1088/0953-2048/13/1/310

    ADS  Article  Google Scholar 

  18. 18.

    Prusseit, W., Sigl, G., Nemetschek, R., Hoffmann, C., Handke, J., Lumkemann, A., Kinder, H.: Commercial coated conductor fabrication based on inclined substrate deposition. IEEE Trans. Appiled Supercond. 15, 2608–2610 (2005). https://doi.org/10.1109/TASC.2005.847680

    ADS  Article  Google Scholar 

  19. 19.

    Goyal, A., Paranthaman, M.P., Schoop, U.: The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552–561 (2004). https://doi.org/10.1557/mrs2004.161

    Article  Google Scholar 

  20. 20.

    Zhao, Y., Zhu, J., Jiang, G. et al. Progress of second-generation high temperature superconducting tape fabrication at Shanghai superconductor technology, Supercond. Sci. Technol. 32(4) 2019. https://doi.org/10.1088/1361-6668/aafea5

  21. 21.

    Vlad, V.R., Usoskin, A., Lee, S., Petrykin, V., Molodyk, A., Bartolome, E., Vilardell, M., Calleja, A., Meledin, A., Obradors, X., Puig, T., Ricart, S., Van Tendeloo, G.: Inkjet printing multideposited YBCO on CGO/LMO/MgO/Y2O3/Al2O3/Hastelloy tape for 2G-coated conductors. IEEE Trans. Appl. Supercond. 28, 1–5 (2018). https://doi.org/10.1109/TASC.2018.2808403

    Article  Google Scholar 

  22. 22.

    Lu, Y.M., Cai, C.B., Liu, Z.Y., Guo, Y.Q., Bin Jiang, H., Zhang, Y.J., Li, M.J., Fan, F., Bai, C.Y., Lu, Q., Dou, W.Z., Yang, W.: Advance in long-length REBCO coated conductors prepared by reel-to-reel metalorganic solution and ion-beam-assisted deposition, IEEE Trans. Appl. Supercond. 29 (2019) 1–5. https://doi.org/10.1109/TASC.2019.2910021

  23. 23.

    Cayado, P., Mundet, B., Obradors, X., et al.: Epitaxial superconducting GdBa2Cu3O7−δ/Gd2O3 nanocomposite thin films from advanced low-fluorine solutions. Supercond. Sci. Technol. 30, 125010 (2017). https://doi.org/10.1088/1361-6668/aa8ffe

    ADS  Article  Google Scholar 

  24. 24.

    Sathyamurthy, S., Thieme, C., Rupich, M.W.: American superconductor: second generation superconductor wire—from research to power grid applications [J]. Springer International Publishing 224, 131–165 (2016). https://doi.org/10.1007/978-3-319-23419-9_5

    Article  Google Scholar 

  25. 25.

    Xuming, X., Sungjin, K., Zdun, K. et al. Progress in high throughput processing of long-length, high quality, and low cost IBAD MgO buffer tapes at SuperPower, IEEE Trans. Appl. Supercond. 19 (2009) 3319–3322. https://doi.org/10.1109/TASC.2009.2018816

  26. 26.

    Martynova, I., Tsymbarenko, D., Kamenev, A., Amelichev, V., Molodyk, A., Kuzmina, N., Kual, A.: Solution deposition of ultrasmooth alumina on long-length metallic substrate for 2G superconducting tapes. Mater. Res. Bull. 78, 64–71 (2016). https://doi.org/10.1016/j.materresbull.2016.02.014

    Article  Google Scholar 

  27. 27.

    Lee, J.-H., Lee, H., Lee, J.-W., Choi, S.-M., Yoo, S.-I., Moon, S.-H.: RCE-DR, a novel process for coated conductor fabrication with high performance. Supercond. Sci. Technol. 27, 044018 (2014). https://doi.org/10.1088/0953-2048/27/4/044018

    ADS  Article  Google Scholar 

  28. 28.

    Usoskin, A., Betz, U., Hofacker, F., Rutt, A., Schlenga, K., Prause, B., Rossi, L., Bottura, L., Ballarino, A., Goldacker, W., Meledin, A., Abraimov, D., Larbalestier, D., Senatore, C.,  Kario, A.: Double-disordered HTS-coated conductors and their assemblies aimed for ultra-high fields: large area tapes, IEEE Trans. Appl. Supercond. 28 (2018) 1–6. https://doi.org/10.1109/TASC.2018.2801348

  29. 29.

    Cui, C., Liu, Z., Lin, J., Guo, Y., Fan, F., Cai, C.: Thick DyBCO/YBCO multilayer films on LaMnO3 substrate derived by metal organic deposition method. J. Supercond. Nov. Magn. 29, 1611–1616 (2016). https://doi.org/10.1007/s10948-016-3419-0

    Article  Google Scholar 

  30. 30.

    Li, M., Yang, W., Shu, G., Bai, C., Lu, Y., Guo, Y., Liu, Z., Cai, C.: Controlled-growth of YBa2Cu3O7−δ film using modified low-fluorine chemical solution deposition. IEEE Trans. Appl. Supercond. 25, 1–4 (2015). https://doi.org/10.1109/TASC.2014.2371534

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB25000000), the National Key Research and Development Program (2016YFF0101701), and the Field Foundation of Pre-Research on Equipment under Grant (6140923050202).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chuanbing Cai or Feng Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Cai, C., Fan, F. et al. The Role of Buffer Layer on the Performance and Uniformity Improvement of Long-Length HTS YBa2Cu3O7−x Tapes Derived by MOD. J Supercond Nov Magn (2021). https://doi.org/10.1007/s10948-021-05934-7

Download citation

Keywords

  • Metallic-organic deposition
  • Coated conductors
  • Performance and uniformity
  • Texture characterization