Magnetic Nanoparticles in Targeted Drug Delivery: a Review

Abstract

Magnetic nanoparticles are one of the most important and widely used types of nanomaterials, whose unique properties make them special compared to other nanostructures. These particles can be used in various fields. But their role in biomedicine, especially in the field of drug delivery, is significant because their inherent magnetism facilitates many tasks, including targeting, which is very important and necessary in drug delivery. In the present article, an attempt has been made to give general information about magnetic nanoparticles and the properties of particles in biomedical applications. In the following, special attention has been paid to the properties of these particles in drug delivery and their various applications have been studied. The importance of coating magnetic nanoparticles has also been mentioned as a basic requirement for medical applications. In the following, the method of drug loading in magnetic nanoparticles, the entry of particles into the body, targeting, and drug release are discussed, and finally, a brief discussion is presented regarding the pharmacokinetics of drugs and their toxicity in the body.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

We consider the submitted is original and unique work, and it has not been submitted to another journal simultaneity. The work is a single study, and it is not up into several parts, and results are presented clearly, honestly, and without falsification or inappropriate data manipulation; the study submitted is part of my doctoral thesis. The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. This work does not contain any studies with human participants or animals performed by any of the authors. Finally, additional informed consent was obtained from all individual participants for whom identifying information is included in this paper.

References

  1. 1.

    Katz, E.: Synthesis, Properties and applications of magnetic nanoparticles and nanowires—a brief introduction. Magnetochemistry. 5, 61 (2019)

    Article  Google Scholar 

  2. 2.

    Antone, A.J., Sun, Z., Bao, Y.: Preparation and application of iron oxide nanoclusters. Magnetochemistry. 5, 45 (2019)

    Article  Google Scholar 

  3. 3.

    Hong, D., Yang, S.H.: Cationic polymers for coating living cells. Macromol. Res. 26, 1185–1192 (2018). https://doi.org/10.1007/s13233-018-6145-6

    Article  Google Scholar 

  4. 4.

    Stefan, L., Raminder, S., Rainer, T., Christoph, A.: Magnetic nanoparticles for magnetic drug targeting. Biomedical Engineering/Biomedizinische Technik. 60(5), 465–475 (2015). https://doi.org/10.1515/bmt-2015-0049

    Article  Google Scholar 

  5. 5.

    Katz, E.: Magnetic nanoparticles. Magnetochemistry. 6(1), 6 (2020). https://doi.org/10.3390/magnetochemistry6010006

    Article  Google Scholar 

  6. 6.

    Socoliuc, V., Peddis, D., Petrenko, V.I., Avdeev, M.V., Susan-Resiga, D., Turcu, R., Tombácz, E., Vékás, L.: Magnetoresponsive nanoparticle systems in biorelevant media. Magnetochemistry. 6, 2 (2019)

    Article  Google Scholar 

  7. 7.

    Khoshnevisan, K., Poorakbar, E., Baharifar, H., Barkhi, M.: Recent advances of cellulase immobilization onto magnetic nanoparticles: an update review. Magnetochemistry. 5, 36 (2019)

    Article  Google Scholar 

  8. 8.

    Zhang, Y., Commisso, C.: Macropinocytosis in cancer: a complex signaling network. Trends Cancer. 5(6), 332–334 (2019). https://doi.org/10.1016/j.trecan.2019.04.002

    Article  Google Scholar 

  9. 9.

    Hepel, M.: Magnetic Nanoparticles in Nanomedicine. Magnetochemistry. 6, 3 (2020)

    Google Scholar 

  10. 10.

    Boyer, C., Whittaker, M., Bulmus, V., Liu, J., Davis, T.: The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPGA Mater. 2(1), 23–30 (2010)

    Article  Google Scholar 

  11. 11.

    Piñeiro, Y., González Gómez, M., de Castro, L., Arnosa Prieto, A., García Acevedo, P., Seco Gudiña, R., Puig, J., Teijeiro, C., Yáñez-Vilar, S., Rivas, J.: Hybrid Nanostructured magnetite nanoparticles: from bio-detection and theragnostics to regenerative medicine. Magnetochemistry. 6, 4 (2020)

    Article  Google Scholar 

  12. 12.

    Bruschi, M.L., de Toledo, L.D.A.S.: Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry. 5, 50 (2019)

    Article  Google Scholar 

  13. 13.

    Bilal, M., Mehmood, S., Rasheed, T., Iqbal, H.M.N.: Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry. 5, 42 (2019)

    Article  Google Scholar 

  14. 14.

    Obaidat, I.M.; Narayanaswamy, V.; Alaabed, S.; Sambasivam, S.; Muralee Gopi, C.V.V. Principles of magnetic hyperthermia: a focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry. 5, 67 (2019)

  15. 15.

    Hosu, O., Tertis, M., Cristea, C.: Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry. 5, 55 (2019)

    Article  Google Scholar 

  16. 16.

    Stergar, J., Ban, I., Maver, U.: The potential biomedical application of NiCu magnetic nanoparticles. Magnetochemistry. 5, 66 (2019)

    Article  Google Scholar 

  17. 17.

    Chen, J., Wu, H., Han, D., Xie, C.: Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett. 231(2), 169–175 (2006)

    Article  Google Scholar 

  18. 18.

    Abulibdeh, N., Kumar, K.V., Karthika, C., Jarin, T., Gopi, A., Bouzidi, A.: Exploring magnetic fluid sensor using dual circular core elliptical cladding photonic crystal fiber. Results Phys. 13, 102216 (2019). https://doi.org/10.1016/j.rinp.2019.102216

    Article  Google Scholar 

  19. 19.

    Almessiere, M.A., Slimani, Y., Baykal, A.: Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram. Int. 45, 963–969 (2019)

    Article  Google Scholar 

  20. 20.

    Slimani, Y., Hannachi, E., Ben Salem, M.K., et al.: Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28, 3001–3010 (2015). https://doi.org/10.1007/s10948-015-3144-0

    Article  Google Scholar 

  21. 21.

    Üzek, R., Sari, E., Merkoçi, A.: Optical-based (Bio) sensing systems using magnetic nanoparticles. Magnetochemistry. 5, 59 (2019)

    Article  Google Scholar 

  22. 22.

    Hannachi, E., Slimani, Y., Azzouz, F.B., Ekicibil, A.: Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. 44(15), 18836–18843 (2018)

    Article  Google Scholar 

  23. 23.

    Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M.A., Baykal, A., Ercan, I.: Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. 30, 9520–9530 (2019)

    Google Scholar 

  24. 24.

    Slimani, Y., Baykal, A., Amir, M., Tashkandi, N., Güngüneş, H., Guner, S., El Sayed, H.S., Aldakheel, F., Saleh, T.A., Manikandan, A.: Ceram. Int. 44(13), 15995–16004 (2018)

    Article  Google Scholar 

  25. 25.

    Tapeinos, C.: Smart nanoparticles for biomedicine, Elsevier, Oxford, UK. (2018). p. 131. https://doi.org/10.1016/B978-0-12-814156-4.00009-4

  26. 26.

    Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., Zitka, O.: Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials (Basel). 7(9), 243 (2017). https://doi.org/10.3390/nano7090243

    Article  Google Scholar 

  27. 27.

    Menghwar, P., Yilmaz, E., Soylak, M.: A hybrid material composed of multiwalled carbon nanotubes and MoSe2 nanorods as a sorbent for ultrasound-assisted solid-phase extraction of lead(II) and copper(II). Mikrochim Acta. 186(10), 666 (2019). https://doi.org/10.1007/s00604-019-3766-1

    Article  Google Scholar 

  28. 28.

    Yilmaz, E.: Use of hydrolytic enzymes as green and effective extraction agents for ultrasound assisted-enzyme based hydrolytic water phase microextraction of arsenic in food samples. Talanta 1(189), 302–307 (2018). https://doi.org/10.1016/j.talanta.2018.07.006. (Epub 3 Jul 2018)

    Article  Google Scholar 

  29. 29.

    Almessiere, M.A., Slimani, Y., Baykal, A.: Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: effect of vanadium substitution. J. Alloy. Compd. 767, 966–975 (2018)

    Article  Google Scholar 

  30. 30.

    Slimani, Y., Almessiere, M.A., Shirsath, S.E., Hannachi, E., Yasin, G., Baykal, A., Ozçelik, B., Ercan, I.: Investigation of structural, morphological, optical, magnetic and dielectric properties of (1–x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020). https://doi.org/10.1016/10.1016/j.jmmm.2020.166933

    Article  Google Scholar 

  31. 31.

    Yilmaz, E., Soylak, M.: A novel and simple deep eutectic solvent based liquid phase microextraction method for rhodamine B in cosmetic products and water samples prior to its spectrophotometric determination. Spectrochim. Acta A Mol. Biomol. Spectrosc. 5(202), 81–86 (2018). https://doi.org/10.1016/j.saa.2018.04.073

    ADS  Article  Google Scholar 

  32. 32.

    Memon, Z.M., Yilmaz, E., Soylak, M.: One step hydrothermal synthesis and characterization of moss like MWCNT-Bi2S3 nanomaterial for solid phase extraction of copper. Talanta. 1(174), 645–651 (2017). https://doi.org/10.1016/j.talanta.2017.06.068

    Article  Google Scholar 

  33. 33.

    Baghban, N., Yilmaz, E., Soylak, M.: A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS. Microchim. Acta. 184, 3969–3976 (2017). https://doi.org/10.1007/s00604-017-2384-z

    Article  Google Scholar 

  34. 34.

    Soylak, M., Acar, D., Yilmaz, E., El-Khodary, S.A., Morsy, M., Ibrahim, M.: Magnetic graphene oxide as an efficient adsorbent for the separation and preconcentration of Cu(II), Pb(II), and Cd(II) from environmental samples. J AOAC Int. 100(5), 1544–1550 (2017). https://doi.org/10.5740/jaoacint.16-0230

    Article  Google Scholar 

  35. 35.

    Almessiere, M.A., Slimani, Y., Sertkol, M., Khan, F.A., Nawaz, M., Tombuloglu, H., Al-Suhaimi, E.A., Baykal, A.: Ce-Nd Co-substituted nanospinel cobalt ferrites: an investigation of their structural, magnetic, optical, and apoptotic properties. Ceram. Int. 45, 16147–16156 (2019)

    Article  Google Scholar 

  36. 36.

    Slimani, Y., Almessiere, M., Güner, S., Tashkandi, N., Baykal, A., Sarac, M., Nawaz, M., Ercan, I.: Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. J. Mater. Sci. Mater. Electron. 30, 9143–9154 (2019)

    Article  Google Scholar 

  37. 37.

    Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Taskhandi, N., Sertkol, M., Baykal, A., Shirsath, S.E., Ercan, I., Ozçelik, B.: Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrason. Sonochem. 58, 104621 (2019)

    Article  Google Scholar 

  38. 38.

    Slimani, Y., Almessiere, M., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., et al.: Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45, 6021–6029 (2019)

    Article  Google Scholar 

  39. 39.

    Yilmaz, E., Salem, S., Sarp, G., Aydin, S., Sahin, K., Korkmaz, I., Yuvali, D.: TiO2 nanoparticles and C-Nanofibers modified magnetic Fe3O4 nanospheres (TiO2@Fe3O4@C-NF): a multifunctional hybrid material for magnetic solid-phase extraction of ibuprofen and photocatalytic degradation of drug molecules and azo dye. Talanta. 1(213), 120813 (2020). https://doi.org/10.1016/j.talanta.2020.120813

    Article  Google Scholar 

  40. 40.

    Das, S., Pérez-Ramírez, J., Gong, J., et al.: Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 49(10), 2937–3004 (2020). https://doi.org/10.1039/c9cs00713j

    Article  Google Scholar 

  41. 41.

    Tombuloglu, H., Tombuloglu, G., Slimani, Y., Ercan, I., Sozeri, H., Baykal, A.: Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Pollut. 243(Pt B), 872–881 (2018). https://doi.org/10.1016/j.envpol.2018.08.096. (Epub 5 Sep 2018 PMID: 3024undefined449)

    Article  Google Scholar 

  42. 42.

    Almessiere, M.A., Slimani, Y., Güner, S., Nawaz, M., Baykal, A., Aldakheel, F. et al.: Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram Int. 45(7, Part A), 8222 (2019)

  43. 43.

    Yılmaz, E., Soylak, M.: Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples. Talanta. 1(158), 152–158 (2016). https://doi.org/10.1016/j.talanta.2016.05.042

    Article  Google Scholar 

  44. 44.

    Akhtar, S., Rehman, S., Almessiere, M.A., Khan, F.A., Slimani, Y., Baykal, A.: Synthesis of Mn0.5Zn0.5SmxEuxFe1.8−2xO4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials. 9(11), 1635 (2019). https://doi.org/10.3390/nano9111635

    Article  Google Scholar 

  45. 45.

    Nawaz, M., Sliman, Y., Ercan, I., Lima-Tenório, M.K., Tenório-Neto, E.T., Kaewsaneha, C., Elaissari, A.: Magnetic and pH-responsive magnetic nanocarriers. Stimuli responsive polymeric nanocarriers for drug delivery applications, Woodhead Publishing. (2019). pp. 37–85

  46. 46.

    Yilmaz, E., Ocsoy, I., Ozdemir, N., Soylak, M.: Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples. Anal Chim Acta. 4(906), 110–117 (2016). https://doi.org/10.1016/j.aca.2015.12.001

    Article  Google Scholar 

  47. 47.

    Khan, R., Rehman, A., Hayat, A., Andreescu, S.: Magnetic Particles-Based Analytical Platforms for Food Safety Monitoring. Magnetochemistry. 5, 63 (2019)

    Article  Google Scholar 

  48. 48.

    Almessiere, M.A., Slimani, Y., Rehman, S., Khan, F.A., Polat, E.G., Sadaqat, A., Shirsath, S.E., Baykal, A.: Synthesis of Dy-Y co-substituted manganese-zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: comparison between sonochemical and sol-gel auto-combustion methods. Mater. Sci. Eng. C Mater. Biol. Appl. 116, 111186 (2020)

    Article  Google Scholar 

  49. 49.

    Oczypok, E.A., Oury, T.D., Chu, C.T.: It’s a cell-eat-cell world: autophagy and phagocytosis. Am. J. Pathol. 182, 612–622 (2013)

    Article  Google Scholar 

  50. 50.

    Vangeti, S., Yu, M., Smed-Sörensen, A.: Respiratory mononuclear phagocytes in human influenza a virus infection: their role in immune protection and as targets of the virus. Front Immunol. 9, 1521 (2018). https://doi.org/10.3389/fimmu.2018.01521

    Article  Google Scholar 

  51. 51.

    Yang, H., Kozicky, L., Saferali, A., Fung, S.-Y., Afacan, N., Cai, B., et al.: Endosomal pH modulation by peptide-gold nanoparticle hybrids enables potent anti-inflammatory activity in phagocytic immune cells. Biomaterials. 111, 90–102 (2016)

    Article  Google Scholar 

  52. 52.

    Hoque, R., Farooq, A., Malik, A., Trawick, BN., Berberich, D.W., McClurg, J.P. et al.: A novel small-molecule enantiomeric analogue of traditional (−)-morphinans has specific TLR9 antagonist properties and reduces sterile inflammation-induced organ damage. J Immunol. 1202184 (2013)

  53. 53.

    Algarou, N.A., Slimani, Y., Almessiere, M.A., Rehman, S., Younas, M., Unal, B.: Developing the magnetic, dielectric and anticandidal characteristics of SrFe12O19/(Mg05Cd05Dy0.03Fe197O4)x hard/soft ferrite nanocomposites. J. Taiwan Inst. Chem. Eng. 113, 344–362 (2020)

  54. 54.

    Patel, M.C., Shirey, K.A., Pletneva, L.M., Boukhvalova, M.S., Garzino-Demo, A., Vogel, S.N., et al.: Novel drugs targeting Toll-like receptors for antiviral therapy. Futur Virol. 9(9), 811–829 (2014)

    Article  Google Scholar 

  55. 55.

    Slimani, Y., Hannachi, E., Tombuloglu, H., Güner, S., Almessiere, M.A., Baykal, A., Aljafary, M.A., Suhaimi, Al., NawazfI, E.A., Ercan, M.: Chapter 14—Magnetic nanoparticles based nanocontainers for biomedical application. Smart Nanocontainers Micro and Nano Technologies. 229–250 (2020)

  56. 56.

    Majer, O., Liu, B., Barton, G.M.: Nucleic acid-sensing TLRs: trafficking and regulation. Curr Opin Immunol. 44, 26–33 (2017)

    Article  Google Scholar 

  57. 57.

    Evans, J.T., Cluff, C.W., Johnson, D.A., Lacy, M.J., Persing, D.H., Baldridge, J.R.: Enhancement of antigen-specific immunity via the TLR4 ligands MPL™ adjuvant and Ribi. 529. Expert Rev Vaccines. 2(2):219–29 (2003)

  58. 58.

    Almessiere, A., Slimani, Y., Demir Korkmaz, A., Baykal, A., Güngüneş, H., Sözeri, H., Shirsath, S.E., Güner, S., Akhtar, S., Manikandan, A.: Impact of La 3+ and Y 3+ ion substitutions on structural, magnetic and microwave properties of Ni 0.3 Cu 0.3 Zn 0.4 Fe2O4 nanospinel ferrites synthesized via sonochemical route. RSC Adv. 9(53), 30671–30684 (2019). https://doi.org/10.1039/C9RA06353F

    ADS  Article  Google Scholar 

  59. 59.

    Kumari, A., Yadav, S.K., Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 75(1), 1–18 (2010)

    Article  Google Scholar 

  60. 60.

    Meister, M., Tikkanen, R.: Endocytic trafficking of membrane-bound cargo: a flotillin point of View. Membranes (Basel). 4(3), 356–371 (2014)

    Article  Google Scholar 

  61. 61.

    Vercauteren, D., Piest, M., Van Der Aa, L.J., Al Soraj, M., Jones, A.T., Engbersen, J.F.J., et al.: Flotillindependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disul fi de-based poly (amido amine)/DNA polyplexes. Biomaterials. 32(11), 3072–3084 (2011)

    Article  Google Scholar 

  62. 62.

    Chi, X., Wang, S., Huang, Y., Stamnes, M., Chen, J.: Roles of Rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci. 14(4), 7089–7108 (2013)

    Article  Google Scholar 

  63. 63.

    Ridley, A.J.: Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16(10), 522–529 (2006)

    Article  Google Scholar 

  64. 64.

    Mellado, M., Jose, M.R.-F., Martinez-Alonzo, C., Manes, S., del Real, G.: Prevention of HIV-1 infection by inhibition of Rho-mediated reorganization and/or content alteration of cell membrane raft. 1, 1–9 (2007)

  65. 65.

    Gerbal-chaloin, S., Gondeau, C., Aldrian-herrada, G.: First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biol Cell. 99, 223–238 (2007)

    Article  Google Scholar 

  66. 66.

    Howes, M.T., Kirkham, M., Riches, J., Cortese, K., Walser, P.J., Simpson, F., et al.: Clathrinindependent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Biol Cell. 190(4), 675–691 (2010)

    Article  Google Scholar 

  67. 67.

    Gaiani, G., O’Sullivan, C.K., Campàs, M.: Magnetic beads in marine toxin detection: a review. Magnetochemistry. 5, 62 (2019)

    Article  Google Scholar 

  68. 68.

    Onodera, R., Motoyama, K., Okamatsu, A., Higashi, T., Arima, H.: Potential use of folate-appended methyl- b -Cyclodextrin as an anticancer agent. Sci. Rep. 3, 1–9 (2013)

    Article  Google Scholar 

  69. 69.

    Mayor, S., Parton, R.G., Donaldson, J.G.: Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 6(6), 1–20 (2014)

    Article  Google Scholar 

  70. 70.

    Fu, A., Tang, R., Hardie, J., Farkas, M.E., Rotello, V.M.: Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem. 25(9), 1602–1608 (2014)

    Article  Google Scholar 

  71. 71.

    Chou, L.Y.T., Ming, K., Chan, W.C.W.: Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 40(1), 233–245 (2011)

    Article  Google Scholar 

  72. 72.

    Biswas, S., Torchilin, V.P.: Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev. 66, 26–41 (2014)

    Article  Google Scholar 

  73. 73.

    Han, Q., Wang, W., Jia, X., Qian, Y., Li, Q., Wang, Z., et al.: Switchable liposomes: targeting peptide-functionalized and pH-triggered cytoplasmic delivery. ACS Appl Mater Interfaces. 8(29), 18658–18663 (2016)

    Article  Google Scholar 

  74. 74.

    Rao, S.K., Reddy, M.K., Horning, J.L., Labhasetwar, V.: TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomterials. 29(33), 4429–4438 (2008)

    Article  Google Scholar 

  75. 75.

    Khalil, I.A., Kogure, K., Futaki, S., Harashima, H.: High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem. 281(6), 3544–3551 (2006)

    Article  Google Scholar 

  76. 76.

    Brusentsova, T.N., Brusentsov, N.A., Kuznetsov, V.D., Nikiforov, V.N.: Synthesis and investigation of magnetic properties of Gd-substituted Mn-Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia. J Magnet Magnetic Mater. 293(1), 298–302 (2005)

  77. 77.

    Nikiforov, V.N., Filinova, E.Y.: Biomedical applications of magnetic nanoparticles. Magnetic nanoparticles. 393–455 (2009)

  78. 78.

    Nikiforov, V.N., Ignatenko, A.N., Irkhin, V.Y.: Size and surface effects on the magnetism of magnetite and maghemite nanoparticles. J. Exp. Theor. Phys. 124(2), 304–310 (2017)

    ADS  Article  Google Scholar 

  79. 79.

    Nikiforov, V.N., Ivanov, A.V., Brusentsov, N.A., Gendler, T.S., Irkhin, V.Y.: Magnetically sensitive nanoparticles for magnetically controlled thermochemotherapy. Int. J. Nanotechnol. 14(7–8), 646–653 (2017)

    ADS  Article  Google Scholar 

  80. 80.

    Schnupf, P., Zhou, J., Varshavsky, A., Portnoy, D.A.: Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect Immun. 75(11), 5135–5147 (2007)

    Article  Google Scholar 

  81. 81.

    Ciocchini, E., Arellano-reynoso, B., Lapaque, N., Salcedo, S., Briones, G., Gorvel, J., et al.: Cyclic b -1, 2-glucan is a brucella virulence factor required for intracellular survival. Nat Immunol. 6(6), 618–625 (2005)

    Article  Google Scholar 

  82. 82.

    Gruenberg, J.: Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 7, 495–504 (2006)

    Article  Google Scholar 

  83. 83.

    Deretic, V., Singh, S., Master, S., Harris, J., Roberts, E., Kyei, G., et al.: Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol. 8, 719–727 (2006)

    Article  Google Scholar 

  84. 84.

    Epand, R.M.: Fusion peptides and the mechanism of viral fusion. Biochimica. 1614, 116–121 (2003)

    Google Scholar 

  85. 85.

    Donald, J.E., Zhang, Y., Fiorin, G., Carnevale, V., Slochower, D.R., Gai, F.: Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion. PNAS. 108(10), 3958–3963 (2011)

    ADS  Article  Google Scholar 

  86. 86.

    Munyendo, W.L.L., Lv, H., Benza-ingoula, H., Baraza, L.D., Zhou, J.: Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules. 2, 187–202 (2012)

    Article  Google Scholar 

  87. 87.

    Nakase, I., Kogure, K., Harashima, H.: Application of a fusiogenic peptide GALA for intracellular delivery. Methods Mol Biol. 683, 525–533 (2011)

    Article  Google Scholar 

  88. 88.

    Wang, T., Yang, S., Petrenko, V.A., Torchilin, V.P.: Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific Phage fusion coat protein. Mol Pharm. 7(4), 1149–1158 (2010)

    Article  Google Scholar 

  89. 89.

    Oliveira, S., van Rooy, I., Kranenburg, O., Storm, G., Schiffelers, R.M.: Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm. 331(2), 211–214 (2007)

    Article  Google Scholar 

  90. 90.

    Ju, E., Park, K., Su, K., Kim, J., Yang, J., Kong, J., et al.: Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 141(1), 2–12 (2010)

    Article  Google Scholar 

  91. 91.

    Campuzano, S., Gamella, M., Serafín, V., Pedrero, M., Yáñez-Sedeño, P., Pingarrón, J.M.: Magnetic Janus Particles for Static and Dynamic (Bio) Sensing. Magnetochemistry. 5, 47 (2019)

    Article  Google Scholar 

  92. 92.

    Basha, G., Novobrantseva, T.I., Rosin, N., Tam, Y.Y.C., Hafez, I.M., Wong, M.K., et al.: Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. 19(12), 2186–2200 (2011)

    Article  Google Scholar 

  93. 93.

    Jin, J., Bae, K.H., Yang, H., Lee, S.J., Kim, H., Kim, Y., et al.: In vivo specific delivery of c-Met siRNAto glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 22, 2568–2572 (2011)

    Article  Google Scholar 

  94. 94.

    Varkouhi, A.K., Scholte, M., Storm, G., Haisma, H.J.: Endosomal escape pathways for delivery of biologicals. J Control Release. 151(3), 220–228 (2011)

    Article  Google Scholar 

  95. 95.

    He, J., Kauffman, W.B., Fuselier, T., Naveen, S.K., Voss, T.G., Hristova, K., et al.: Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem. 288(41), 29974–29986 (2013)

    Article  Google Scholar 

  96. 96.

    Kim, M., Lee, J.-H., Nam, J.-M.: Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci. 6, 1900471 (2019)

    Article  Google Scholar 

  97. 97.

    Lai, P., Pai, C., Peng, C., Shieh, M., Berg, K., Lou, P.: Enhanced cytotoxicity of saporin by polyamidoamine dendrimer conjugation and photochemical internalization. J Biomed Mater Res. Part A 87(1), 147–155 (2007)

    Article  Google Scholar 

  98. 98.

    Alonso, M.A., Millán, J.: The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci. 114(Pt 22), 3957–3965 (2001)

    Article  Google Scholar 

  99. 99.

    Partlow, K.C., Lanza, G.M., Wickline, S.A.: Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials. 29(23), 3367–3375 (2008)

    Article  Google Scholar 

  100. 100.

    Jaspreet, K., Vasir, V.L.: Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 59(8), 718–728 (2008)

    Google Scholar 

  101. 101.

    Chu, Z., Miu, K., Lung, P., Zhang, S., Zhao, S., Chang, H.C., et al.: Rapid endosomal escape of prickly nanodiamonds: Implications for gene delivery. Sci Rep. 5, 1–8 (2015)

    Google Scholar 

  102. 102.

    Tan, Y., Zhu, Y., Zhao, Y., Wen, L., Meng, T., Liu, X., et al.: Mitochondrial alkaline pH-responsivedrug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials. (2017); Available from: https://doi.org/10.1016/j.biomaterials.2017.07.036

  103. 103.

    Xu, Y., Wang, S., Chan, H.F., Liu, Y., Li, H., He, C. et al.: Triphenylphosphonium-modified Poly ( ethylene glycol )-poly ( ε -caprolactone ) micelles for mitochondria-targeted gambogic acid delivery. Int J Pharm. (2017); Available from: https://doi.org/10.1016/j.ijpharm.2017.01.064

  104. 104.

    Chan, M.S., Liu, L.S., Leung, H.M., Lo, P.K. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 9(13), 11780–11789 (2017)

    Article  Google Scholar 

  105. 105.

    Zhou, J., Zhao, W., Ma, X., Ju, R., Li, X., Li, N., et al.: The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 34, 3626–3638 (2013)

    Article  Google Scholar 

  106. 106.

    Wang, T., Hou, J., Su, C., Zhao, L., Shi, Y.: Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnol. 15(1), 1–12 (2017)

    Article  Google Scholar 

  107. 107.

    Qu, Q., Ma, X., Zhao, Y.: Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale. 7(40), 1–9 (2013)

    Google Scholar 

  108. 108.

    Yamada, Y., Munechika, R., Kawamura, E., Sakurai, Y., Sato, Y., Harashima, H.: Mitochondrial delivery of doxorubicin using MITO-porter kills drug-resistant renal cancer cells via mitochondrial toxicity. J Pharm Sci. 106(9), 2428–2437 (2017)

    Article  Google Scholar 

  109. 109.

    López, V., Villegas, M.R., Rodríguez, V., Villaverde, G., Lozano, D., Baeza, A., et al.: Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl MaterInterfaces. 9(32), 26697–26706 (2017)

    Article  Google Scholar 

  110. 110.

    Manjunatha, K., Jagadeesha Angadi, V., Srinivasamurthy, K.M., et al.: Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J Supercond Nov Magn. 33, 1747–1757 (2020). https://doi.org/10.1007/s10948-019-05403-2

    Article  Google Scholar 

  111. 111.

    Rajendran, L., Knölker, H.J., Simons, K.: Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 9(1), 29–42 (2010)

    Article  Google Scholar 

  112. 112.

    Singh, L., Kruger, H.G., Maguire, G.E.M., Govender, T., Parboosing, R.: Development and evaluation of peptide-functionalized gold nanoparticles for hiv integrase inhibition. Int J Pept Res Ther. 0(0), 1–12 (2018)

  113. 113.

    Pan, L., He, Q., Liu, J., Chen, Y., Zhang, L., Shi, J.: Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 134, 5722–5725 (2012)

    Article  Google Scholar 

  114. 114.

    Zhou, Z., Liu, Y., Wu, L., Li, L., Huang, Y.: Enhanced nuclear delivery of anti-cancer drugs using micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. J Mater Chem B. 5(34), 7175–7185 (2017)

    Article  Google Scholar 

  115. 115.

    Jing, Y., Xiong, X., Ming, Y., Zhao, J., Guo, X., Yang, G.: A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv Healthc Mater. 1700974, 1–13 (2018)

    Google Scholar 

  116. 116.

    Cerrato, C.P., Künnapuu, K., Langel, Ü.: Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv. 14(2), 245–255 (2017)

    Article  Google Scholar 

  117. 117.

    Almessiere, M.A., Slimani, Y., Güngüneş, H., El Sayed, H.S., Baykal, A.: AC susceptibility and Mossbauer study of Ce3+ ion substituted SrFe12O19 nanohexaferrites. Ceram. Int. 44, 10470–10477 (2018)

    Article  Google Scholar 

  118. 118.

    Zakariah, M., Khan, S., Choudhary, A.A., Rolfo, C., Ben Ismail, M.M., Alotaibi, Y.A.: To decipher the mycoplasma hominis proteins targeting into the endoplasmic reticulum and their nextgeneration sequencing data. Molecules. 23(5), 1–12 (2018)

    Article  Google Scholar 

  119. 119.

    Boelens, J., Lust, S., Offner, F., Bracke, M.E., Vanhoecke, B.W.: Review The endoplasmic reticulum: a target for new anticancer drugs. Vivo. 21(2), 215–226 (2007)

    Google Scholar 

  120. 120.

    Inoue, T., Tsai, B.: How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol. 5(1), 1–17 (2013)

    Article  Google Scholar 

  121. 121.

    Pan, T., Song, W., Gao, H., Li, T., Cao, X., Zhong, S., et al.: miR-29b-loaded gold nanoparticles targeting to the endoplasmic reticulum for synergistic promotion of osteogenic differentiation. Appl Mater Interfaces. 8(30), 19217–19227 (2016)

    Article  Google Scholar 

  122. 122.

    Sneh-Edri, H., Likhtenshtein, D., Stepensky, D.: Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm. 8(4), 1266–1275 (2011)

    Article  Google Scholar 

  123. 123.

    Zhang, J., Sun, A., Xu, R., Tao, X., Dong, Y., Lv, X., et al.: Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol. 231(1), 84–93 (2016)

    Article  Google Scholar 

  124. 124.

    Alahmari, F., Almessiere, M.A., Slimani, Y., Güngüneş, H., Shirsath, S.E., Akhtar, S., Jaremko, M., Baykal , A.: Synthesis and characterization of electrospun Ni0.5Co0.5−xCdxNd0.02Fe1.78O4 nanofibers. Nano-Structures & Nano-Objects. 24(2020), 100542 (2018)

    Google Scholar 

  125. 125.

    Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M.A., Mahmoud, Y., Dreaden, E.C., et al.: Cellular uptake of nanoparticles: journey inside the cell. Chem Soc. 46(14), 4218–4244 (2018)

    Article  Google Scholar 

  126. 126.

    Waters, K.M., Masiello, L.M., Zangar, R.C., Tarasevich, B.J., Karin, N.J., Quesenberry, R.D., et al.: Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci. 107(2), 553–569 (2009)

    Article  Google Scholar 

  127. 127.

    Cooley, M., Sarode, A., Hoore, M., Fedosov, D.A., Mitragotri, S., Sen, G.A.: Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle across nano-to-micro scale. Nanoscale. 10(32), 15350–15364 (2018)

    Article  Google Scholar 

  128. 128.

    Korkmaz, A.D., Güner, S., Slimani, Y., et al.: Microstructural, optical, and magnetic properties of vanadium-substituted nickel spinel nanoferrites. J Supercond Nov Magn. 32, 1057–1065 (2019). https://doi.org/10.1007/s10948-018-4793-6

    Article  Google Scholar 

  129. 129.

    Huang, K., Ma, H., Liu, J., Huo, S., Kumar, A., Wei, T., et al.: Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 6(5), 4483–4493 (2012)

    Article  Google Scholar 

  130. 130.

    Rausch, K., Reuter, A., Fischer, K., Schmidt, M.: Evaluation of nanoparticle aggregation in humanblood serum. Biomacromol. 11(11), 2836–2839 (2010)

    Article  Google Scholar 

  131. 131.

    Albanese, A., Chan, W.C.: Effect of gold nanoparticle aggregation on cell uptake and toxicity BT. ACS Nano. 5(7), 5478–5489 (2011)

    Article  Google Scholar 

  132. 132.

    Salmaso, S., Caliceti, P.: Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013, 1–18 (2013)

    Article  Google Scholar 

  133. 133.

    Storm, G., Belliot, S., Daemenb, T., Lasic, D.D.: Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 17(95), 31–48 (1995)

    Article  Google Scholar 

  134. 134.

    Owens, D.E., Peppas, N.A.: Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 307, 93–102 (2006)

    Article  Google Scholar 

  135. 135.

    Mcsweeney, M.D., Versfeld, Z.C., Carpenter, D.M., Lai, S.K.: Physician awareness of immune responses to polyethylene glycol-drug conjugates. Clin Transl Sci. 11, 162–165 (2018)

    Article  Google Scholar 

  136. 136.

    Amoozgar, Z., Yeo, Y.: Recent advances in stealth coating of nanoparticle drug delivery systems Zohreh. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 4(2), 219–233 (2013)

    Article  Google Scholar 

  137. 137.

    Podlekareva, K., Akmal, F.: Palmar-plantar erythrodysesthesia associated with chemotherapy and its treatment. Case Rep Oncol. 4, 229–235 (2011)

    Article  Google Scholar 

  138. 138.

    Von Erlach, T., Zwicker, S., Pidhatika, B., Konradi, R., Textor, M., Hall, H., et al.: Formation and characterization of DNA-polymer-condensates based on poly (2-methyl-2-oxazoline) grafted poly (L -lysine) for non-viral delivery of therapeutic DNA. Biomaterials. 32(22), 5291–5303 (2011)

    Article  Google Scholar 

  139. 139.

    Metselaar, J.M., Bruin, P., De. Boer, L.W.T., De. Vringer, T., Snel, C., Oussoren, C., et al.: A novel family of L -amino acid-based biodegradable polymer–lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem. 14, 1156–1164 (2003)

    Article  Google Scholar 

  140. 140.

    Lammers, T., Subr, V., Ulbrich, K., Peschke, P., Huber, P.E., Hennink, W.E., et al.: Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials. 30(20), 3466–3475 (2009)

    Article  Google Scholar 

  141. 141.

    Sun, J., Zeng, F., Jian, H., Wu, S.: Conjugation with betaine: a facile and effective approach to significant improvement of gene delivery properties of PEI. Biomacromol. 14, 728–736 (2013)

    Article  Google Scholar 

  142. 142.

    Siegers, C., Biesalski, M., Haag, R.: Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J. 10, 2831–2838 (2004)

    Article  Google Scholar 

  143. 143.

    Alhareth, K., Vauthier, C., Bourasset, F., Gueutin, C., Ponchel, G., Moussa, F.: Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm. 81(2), 453–457 (2012)

    Article  Google Scholar 

  144. 144.

    Vonarbourg, A., Passirini, C., Saulnier, P., Simard, P., Leroux, J.C., Benoit, J.P.: Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater. 78(3), 620–628 (2006)

    Article  Google Scholar 

  145. 145.

    Yoo, H.S., Lee, J.E., Chung, H., Kwon, I.C., Jeong, S.Y.: Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release. 103, 235–243 (2005)

    Article  Google Scholar 

  146. 146.

    Guhagarkar, S.A., Majee, S.B., Samad, A., Devarajan, P.V.: Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line. Cancer Nanotechnol. 2, 49–55 (2011)

    Article  Google Scholar 

  147. 147.

    Guhagarkar, S.A., Gaikwad, R.V., Samad, A., Malshe, V.C., Devarajan, P.V.: Polyethylene sebacate doxorubicin nanoparticles for hepatic targeting. Int J Pharm. 401(1–2), 113–122 (2010)

    Article  Google Scholar 

  148. 148.

    Guhagarkar, S.A., Shah, D., Patel, M.D., Sathaye, S.S., Devarajan, P.V.: Polyethylene sebacatesilymarin nanoparticles with enhanced hepatoprotective activity. J Nanosci Nanotechnol. 15, 4090–4093 (2015)

    Article  Google Scholar 

  149. 149.

    Souza, A.A.D., Devarajan, P.V.: Bioenhanced oral curcumin nanoparticles: role of carbohydrates. Carbohydr Polym. 136, 1251–1258 (2016)

    Article  Google Scholar 

  150. 150.

    Pranatharthiharan, S., Patel, M.D., Malshe, V.C., Padma, V., Pranatharthiharan, S., Patel, M.D., et al.: Polyethylene sebacate doxorubicin nanoparticles: role of carbohydrate anchoring on in vitro and in vivo anticancer efficacy. Drug Deliv. 7544, 1–10 (2016)

    Google Scholar 

  151. 151.

    Pranatharthiharan, S., Patel, M.D., Malshe, V.C., Gorakshakar, A., Madkaikar, M., Ghosh, K., et al.: Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv. 7544, 20–29 (2017)

    Article  Google Scholar 

  152. 152.

    Doh, K.O., Yeo, Y.: Application of polysaccharides for surface modification of nanomedicines. Ther Deliv. 3(12), 1447–1456 (2013)

    Article  Google Scholar 

  153. 153.

    Milosevits, G., Krol, S.: Exosomes: potential model for complement- stealth delivery systems structure of exosomes. Eur J Nanomed. 7(3), 207–218 (2015)

    Article  Google Scholar 

  154. 154.

    Fan, W., Yan, W., Xu, Z., Ni, H.: Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system. Colloids Surf B Biointerfaces. 95, 258–265 (2012)

    Article  Google Scholar 

  155. 155.

    Li, Y., Kroger, M., Liu, K.W.: Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials. 35, 8467–8478 (2014)

    Article  Google Scholar 

  156. 156.

    Jindal, A.B.: The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm. 532(1), 450–465 (2017)

    Article  Google Scholar 

  157. 157.

    Dasgupta, S., Auth, T., Gompper, G.: Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 14, 687–693 (2014)

    ADS  Article  Google Scholar 

  158. 158.

    Agarwal, R., Singh, V., Jurney, P., Shi, L., Sreenivasan, S.V., Roy, K.: Mammalian cells preferentiallyinternalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Nat Acad Sci. 110(43), 1–6 (2013)

    Article  Google Scholar 

  159. 159.

    Slimani, Y., Almessiere, M.A., Sertkol, M., Shirsath, S.E., Baykal, A., Nawaz, M., Akhtar, S., Ozcelik, B., Ercan, I.: Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2−xO4 (0.0 ≤ x ≤ 0.10) spinel ferrites synthesized by ultrasound irradiation. Ultrason. Sonochem. 57, 203–211 (2019)

    Article  Google Scholar 

  160. 160.

    Nowacek, A.S., Balkundi, S., Mcmillan, J., Roy, U., Martinez-skinner, A., Mosley, R.L., et al.: Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J ControlRelease. 150(2), 204–211 (2011)

    Google Scholar 

  161. 161.

    Li, Y., Chen, X., Gu, N.: Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B. 112(51), 16647–16653 (2008)

    Article  Google Scholar 

  162. 162.

    Moyano, D.F., Goldsmith, M., Solfiell, D.J., Landesman-milo, D., Miranda, O.R., Peer, D., et al.: Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 134(9), 3965–3967 (2012)

    Article  Google Scholar 

  163. 163.

    Malcolm DW, Freeberg MAT, Wang Y, Sims KR Jr, Awad HA, DSW B. Diblock copolymerhydrophobicity facilitates efficient gene silencing and cytocompatible nanoparticle- mediated siRNA delivery to musculoskeletal cell types. Biomacromolecules. 18(11):3753–65 (2017)

  164. 164.

    Voigt, J., Christensen, J., Shastri, V.P.: Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. PNAS. 111(8), 2942–2947 (2014)

    ADS  Article  Google Scholar 

  165. 165.

    Verma, A., Stellacci, F.: Effect of surface properties on nanoparticle – cell interactions. Small. 1, 12–21 (2010)

    Article  Google Scholar 

  166. 166.

    He, C., Hu, Y., Yin, L., Tang, C., Yin, C.: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31(13), 3657–3666 (2010)

    Article  Google Scholar 

  167. 167.

    Almessiere, M.A., Slimani, Y., Guner, S., Sertkol, M., Sagar, A.D.K., Shirsath, E., Baykal, A.: Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason Sonochem. 58, 104654 (2019)

  168. 168.

    Clemens, D.L., Lee, B., Xue, M., Thomas, C.R., Meng, H., Ferris, D., et al.: Targeted intracellular delivery of antituberculosis drugs to mycobacterium tuberculosis-infected macrophages via functionalized. 2535–45 (2012)

  169. 169.

    Nam, H.Y., Kwon, S.M., Chung, H., Lee, S.Y., Kwon, S.H., Jeon, H., et al.: Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J ControlRelease. 135(3), 259–267 (2009)

    Google Scholar 

  170. 170.

    Slimani, Y., Almessiere, M.A., Korkmaz, A.D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S.E., Baykal, A.: Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: ultrasonic synthesis and physical properties. Ultrason. Sonochem. 59, 104757 (2019). https://doi.org/10.1016/j.ultsonch.2019.104757

  171. 171.

    Deng, L., Que, F., Wei, H., Xu, G., Dong, X., Zhang, H.: Solubilization of tea seed oil in a food-grade water-dilutable microemulsion. PLoS One. 10(5), 1–12 (2015)

    Google Scholar 

  172. 172.

    Koblischka, M.R., Koblischka-Veneva, A., Zeng, X., Hannachi, E., Slimani, Y.: Microstructure and fluctuation-induced conductivity analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) nanowire fabrics. Curr. Comput.-Aided Drug Des. 10, 986 (2020). https://doi.org/10.3390/cryst10110986

    Article  Google Scholar 

  173. 173.

    Lourenc, I., Mainardes, R.M., Palmira, M., Gremia, D.: Zidovudine-loaded PLA and PLA – PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci. 98(1), 257–267 (2009)

    Article  Google Scholar 

  174. 174.

    Xiao, K., Li, Y., Luo, J., Lee, J.S., Xiao, W., Gonik, A.M., et al.: The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 32(13), 3435–3446 (2011)

    Article  Google Scholar 

  175. 175.

    Akhtar, S.; Rehman, S.; Almessiere, M.A.; Khan, F.A.; Slimani, Y.; Baykal, A. Synthesis of Mn0.5Zn0.5SmxEuxFe1.8−2xO4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials. 9, 1635 (2019). https://doi.org/10.3390/nano9111635

  176. 176.

    Guo, P., Liu, D., Subramanyam, K., Wang, B., Auguste, D.T., Moses, M.A.: Nanoparticle elasticity directs tumor uptake. Nat Commun. 9, 1–9 (2018)

    Article  Google Scholar 

  177. 177.

    Li, S.-D., Huang, L.: Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 1788(10), 2259–2266 (2010)

    Article  Google Scholar 

  178. 178.

    Na, K., Lee, T.B., Park, K., Shin, E., Lee, Y., Choi, H.: Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci. 18, 165–173 (2003)

    Article  Google Scholar 

  179. 179.

    Yuan, H., Fales, A.M., Vo-dinh, T.: TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 134, 11358–11361 (2012)

    Article  Google Scholar 

  180. 180.

    Edagwa, B.J., Guo, D., Puligujja, P., Chen, H., Mcmillan, J., Liu, X., et al.: Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. FASEB J. 28, 1–12 (2014)

    Article  Google Scholar 

  181. 181.

    Zuo, C., Chen, Q., Tian, L., Waller, L., Asundi, A.: Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Optic Laser. Eng. 71, 20–32 (2015). https://doi.org/10.1016/j.optlaseng.2015.03.006

    Article  Google Scholar 

  182. 182.

    Zuo, C., Sun, J., Li, J., et al.: High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep. 7, 7654 (2017). https://doi.org/10.1038/s41598-017-06837-1

    ADS  Article  Google Scholar 

  183. 183.

    Hu, P., et al.: Distribution characteristics of salt-out particles in steam turbine stage. Energy. 192, 116626 (2020)

  184. 184.

    Salimi, M., Pirouzfar, V., Kianfar, E.: Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci. 295, 215–226 (2017). https://doi.org/10.1007/s00396-016-3998-0

    Article  Google Scholar 

  185. 185.

    Kianfar, E.: Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem. 91, 1711–1720 (2018). https://doi.org/10.1134/S1070427218100208

    Article  Google Scholar 

  186. 186.

    Kianfar, E.: Ethylene to propylene conversion over Ni-W/ZSM-5 Catalyst. Russ J Appl Chem. 92, 1094–1101 (2019). https://doi.org/10.1134/S1070427219080068

    Article  Google Scholar 

  187. 187.

    Kianfar, E., Salimi, M., Kianfar, F., et al.: CO2/N2 Separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 27, 83–89 (2019). https://doi.org/10.1007/s13233-019-7009-4

    Article  Google Scholar 

  188. 188.

    Kianfar, E.: Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ J Appl Chem. 92, 933–939 (2019). https://doi.org/10.1134/S1070427219070085

    Article  Google Scholar 

  189. 189.

    Kianfar, E., Shirshahi, M., Kianfar, F., et al.: Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. SILICON. 10, 2617–2625 (2018). https://doi.org/10.1007/s12633-018-9798-z

    Article  Google Scholar 

  190. 190.

    Salimi, M., Pirouzfar, V., Kianfar, E.: Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym. Sci. Ser. A 59, 566–574 (2017). https://doi.org/10.1134/S0965545X17040071

    Article  Google Scholar 

  191. 191.

    Kianfar, F., Kianfar, E.: Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J Inorg Organomet Polym. 29, 2176–2185 (2019). https://doi.org/10.1007/s10904-019-01177-1

    Article  Google Scholar 

  192. 192.

    Jiang, D., Chen, F.X., Zhou, H., Lu, Y.Y., Tan, H., Yu, S.J., Yuan, J., Liu, H., Meng, W., Jin, Z.B.: Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics. 10(16), 7260–7272 (2020). https://doi.org/10.7150/thno.46332.PMID:32641991;PMCID:PMC7330858

    Article  Google Scholar 

  193. 193.

    Pan, D., Xia, X.X., Zhou, H., Jin, S.Q., Lu, Y.Y., Liu, H., Gao, M.L., Jin, Z.B.: COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Res Ther. 11(1), 366 (2020). https://doi.org/10.1186/s13287-020-01883-5.PMID:32831148;PMCID:PMC7444242

    Article  Google Scholar 

  194. 194.

    Zhang, J., Liu, B.: A review on the recent developments of sequence-based protein feature extraction methods. Curr Bioinforma. 14(3), 190–199 (2019)

  195. 195.

    Xu, L., Jiang, S., Wu, J., Zou, Q.: An in silico approach to identification, categorization and prediction of nucleic acid binding proteins. Brief. Bioinform. (2020). https://doi.org/10.1093/bib/bbaa171

    Article  Google Scholar 

  196. 196.

    Zhu, X., Lin, F., Zhang, Z., Chen, X., Huang, H., Wang, D., Tang, J., Fang, X., Fang, D., Ho, J.C., Liao, L., Wei, Z.: Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron–hole tube structure. Nano Lett. 20(4), 2654–2659 (2020). https://doi.org/10.1021/acs.nanolett.0c00232

    ADS  Article  Google Scholar 

  197. 197.

    Chen, X., Wang, D., Wang, T., Yang, Z., Zou, X., Wang, P., Luo, W., Li, Q., Liao, L., Hu, W., Wei, Z.: Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl Mater Interfaces. 11(36), 33188–33193 (2019). https://doi.org/10.1021/acsami.9b07891. (Epub 27 Aug 2019 PMID: 31415147)

    Article  Google Scholar 

  198. 198.

    Kianfar, E., Azimikia, R., Faghih, S.M.: Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catal Lett. 150, 2322–2330 (2020). https://doi.org/10.1007/s10562-020-03116-z

    Article  Google Scholar 

  199. 199.

    Kianfar, E.: Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol. 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4

    Article  Google Scholar 

  200. 200.

    Liu, H., Kianfar, E.: Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal Lett. (2020). https://doi.org/10.1007/s10562-020-03333-6

    Article  Google Scholar 

  201. 201.

    Kianfar, E., Salimi, M., Hajimirzaee, S., Koohestani, B.: Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int. J. Chem. React. Eng. 17, (2018)

  202. 202.

    Kianfar, E., Salimi, M., Pirouzfar, V., Koohestani, B.: Int J Appl CeramTechnol. 15, 734–741 (2018)

    Google Scholar 

  203. 203.

    Kianfar, E., Salimi, M., Pirouzfar, V., Koohestani, B.: Int J of Chem Reactor Engineering. 16, 1–7 (2018)

    Article  Google Scholar 

  204. 204.

    Kianfar, E.: Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem. 39, 157–177 (2019)

    Article  Google Scholar 

  205. 205.

    Kianfar, E., Salimi, M.: A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in Chemistry Research, Volume 59: Edition: James C. Taylor Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA. (2020)

  206. 206.

    Kianfar, E., Razavi, A.: Zeolite catalyst based selective for the process MTG: a review: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc., NY, USA. (2020)

  207. 207.

    Kianfar, E.: Zeolites: properties, applications, modification and selectivity: In book: Zeolites: advances in research and applications, Edition: Annett Mahler Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA. (2020)

  208. 208.

    Kianfar, E., Hajimirzaee, S., Musavian, S.S., Mehr, A.S.: Zeolite-based catalysts for methanol to gasoline process: a review. Microchem J. 104822 (2020)

  209. 209.

    Kianfar, E., Baghernejad, M., Rahimdashti, Y.: Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biological Forum. 7, 1671–1685 (2015)

    Google Scholar 

  210. 210.

    Kianfar, E.: Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing. 1–80 (2020) ISBN: 978–613–9–81541–8

  211. 211.

    Fickenscher, M., Shi, T., Jackson, H.E., et al.: Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nano-wire quantum well tubes. Nano Lett. 1, 1016–1022 (2013)

    ADS  Article  Google Scholar 

  212. 212.

    Zhao, X., Chen, L., Guo, Z.-H., Liu, T.: Predicting drug side effects with compact integration of heterogeneous networks. Curr. Bioinform. 15(5), 90–107 (2020)

    Google Scholar 

  213. 213.

    Shen, C.-L., Lou, Q., Zang, J.-H., Liu, K.-K., Qu, S.-N., Dong, L., Shan, C.-X.: Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 7, 1903525 (2020). https://doi.org/10.1002/advs.201903525

    Article  Google Scholar 

  214. 214.

    Zou, Q., Xing, P., Wei, L., Liu, B.: Gene2vec: gene subsequence embedding for prediction of mammalian n6-methyladenosine sites from mrna. RNA. 25(2), 205–218 (2019)

    Article  Google Scholar 

  215. 215.

    Yang, S., Wang, J., Hao ,X., Li, H., Wei, X., Deng, B., Loparo, KA. BiCoSS: Toward large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans Neural Netw Learn Syst. (2021). 11 PP. https://doi.org/10.1109/TNNLS.2020.3045492

  216. 216.

    Kianfar, E., Pirouzfar, V., Sakhaeinia, H.: An experimental study on absorption/stripping CO2 using mono-ethanol amine hollow fiber membrane contactor. J. Taiwan Inst. Chem. Eng. 80, 954–962 (2017)

    Article  Google Scholar 

  217. 217.

    Kianfar, E., Viet, C.: Polymeric membranes on base of polymethyl methacrylate for air separation: a review. J. Market. Res. 10, 1437–1461 (2021)

    Google Scholar 

  218. 218.

    Nmousavian, S.S., Faravar, P., Zarei, Z., Zimikia, R., Monjezi, M.G., Kianfar, E.: Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng. 8(4), 103946 (2020)

  219. 219.

    Yang, Z., Zhang, L., Zhou, Y., Wang, H., Wen, L., Kianfar, E.: Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: a review. Rev. Inorg. Chem. 40(3), 91–105 (2020). https://doi.org/10.1515/revic-2020-0003

    Article  Google Scholar 

  220. 220.

    Gao, C., Liao, J., Jingqiong, Lu., Ma, J., Kianfar, E.: The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev. Inorg. Chem. (2020). https://doi.org/10.1515/revic-2020-0007

    Article  Google Scholar 

  221. 221.

    Kianfar, E., Salimi, M., Koohestani, B.: Zeolite CATALYST: A review on the production of light olefins. Publisher: Lambert Academic Publishing. 1–116 (2020). ISBN:978–620–3–04259–7

  222. 222.

    Kianfar, E.: Investigation on catalysts of “methanol to light olefins.” Publisher: Lambert Academic Publishing. 1–168 (2020). ISBN: 978–620–3–19402–9

  223. 223.

    Kianfar, E.: Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers. 5(3) pp. 16–21 (2020)

  224. 224.

    Kianfar, E.: Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology. MedDocs Publishers. 5(4) 22–25 (2020)

  225. 225.

    Kianfar, E.: Introducing the application of nanotechnology in lithium-ion battery importance & applications of nanotechnology, MedDocs Publishers. 4(4) 1–7 (2020)

  226. 226.

    Kianfar, E., Mazaheri, H.: Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem Engi. 1, 83–91 (2020)

  227. 227.

    Kianfar, E.: Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chemical Engineering. 1, 69–74 (2020)

    Google Scholar 

  228. 228.

    Kianfar, E., Salimi, M., Koohestani, B.: Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chemical Engineering. 1, 75–82 (2020)

    Google Scholar 

  229. 229.

    Kianfar, E.: An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chemical Engineering. 1, 92–103 (2020)

    Google Scholar 

  230. 230.

    Kianfar, E., Mafi, S.: Ionic liquids: properties, application, and synthesis. Fine Chemical Engineering. 2, 22–31 (2020)

    Article  Google Scholar 

  231. 231.

    Faghih, S.M., Kianfar, E.: Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int. J. Chem. React. Eng. 16, 1–14 (2018)

    Google Scholar 

  232. 232.

    Kianfar, E., Mazaheri, H.: Methanol to gasoline: a sustainable transport fuel, In book: Advances in chemistry research. Volume 66, Edition: james C.taylorChapter: 4 Publisher: Nova Science Publishers, Inc., NY, USA. (2020)

  233. 233.

    Kianfar, E.: A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: a review, in Advances in Chemistry Research, Vol. 63, Chapter 2. NewYork: Nova Science Publishers, Inc. (2020)

  234. 234.

    Kianfar, E., Hajimirzaee, S., Faghih, S.M., et al.: Polyvinyl chloride + nanoparticles titanium oxide Membrane for Separation of O2 / N2. Advances in Nanotechnology. NY, USA: Nova Science Publishers, Inc. (2020)

  235. 235.

    Kianfar, E.: Synthesis of characterization nanoparticles isophthalic acid/aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research. NY, USA: Nova Science Publishers, Inc. (2020)

  236. 236.

    Yang, S., Wang. J., Hao, X., Li, H., Wei, X., Deng, B., Loparo, K.A.: BiCoSS: Toward large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans Neural Netw Learn Syst. (2021 Jan 11); https://doi.org/10.1109/TNNLS.2020.3045492. Epub ahead of print. PMID: 33428574

  237. 237.

    Yang, X., Li, Q., Lu, E., et al.: Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 10, 1611 (2019). https://doi.org/10.1038/s41467-019-09662-4

    ADS  Article  Google Scholar 

  238. 238.

    Xiang, L., Peng, Y., Xiaodong, N., Hiroshi, Y., Decai, L.: Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation. J Magn Magn Mater. 497 article id. 165957 (2020)

  239. 239.

    Kianfar, E.: CO2 Capture with ionic liquids: a review. advances in chemistry research. Volume 67 Publisher: Nova Science Publishers, Inc., NY, USA. (2020)

  240. 240.

    Kianfar, E.: Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in Chemistry Research. Volume 63, Chapter: 4, Nova Science Publishers, Inc., NY, USA. (2020)

  241. 241.

    Kianfar, E.: Gas hydrate: applications, structure, formation, separation processes, Thermodynamics. Advances in Chemistry Research. Volume 62, Edition: James C. Taylor. Chapter: 8. Publisher: Nova Science Publishers, Inc., NY, USA. (2020)

  242. 242.

    Kianfar, M., Kianfar, F., Kianfar, E.: The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. American Journal of Oil and Chemical Technologies. 4(1), 29–44 (2016)

    MathSciNet  Google Scholar 

  243. 243.

    Kianfar, E.: The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. American Journal of Oil and Chemical Technologies. 4(1), 27–42 (2016)

    MathSciNet  Google Scholar 

  244. 244.

    Kianfar, F.: Seyed Reza Mahdavi Moghadam1 and Ehsan Kianfar, Energy optimization of Ilam Gas Refinery Unit 100 by using HYSYS Refinery Software (2015). Indian J. Sci. Technol. 8(S9), 431–436 (2015)

    Google Scholar 

  245. 245.

    Kianfar, E.: Production and identification of vanadium oxide nanotubes. Indian J. Sci. Technol. 8(S9), 455–464 (2015)

    Article  Google Scholar 

  246. 246.

    Kianfar, F.: Seyed Reza Mahdavi Moghadam1 and Ehsan Kianfar, Synthesis of Spiro Pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst, Indian. J. Sci. Technol. 8(11), 68669 (2015)

    Google Scholar 

  247. 247.

    Kianfar, E.: Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchem. J. 145, 966–978 (2019)

    Article  Google Scholar 

  248. 248.

    Hajimirzaee, S., Soleimani Mehr, A., Kianfar, E.: Modified ZSM-5 zeolite for conversion of LPG to aromatics, polycyclic aromatic compounds. (2020). https://doi.org/10.1080/10406638.2020.1833048

  249. 249.

    Kianfar, E.: Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet. Chem. (2021). https://doi.org/10.1134/S0965544121050030

    Article  Google Scholar 

  250. 250.

    Kianfar, E.: Nano biosensors: properties, applications and electrochemical techniques, Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2021.03.048

  251. 251.

    Pang, X., Gong, K., Zhang, X., et al.: Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol. Res. 144, 235–244 (2019). https://doi.org/10.1016/j.phrs.2019.04.030

    Article  Google Scholar 

  252. 252.

    Wu, P., Gao, W., Su, M., Nice, E.C., Zhang, W., Lin, J., Xie, N.: Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Front Cell Dev Biol. 1(9), 641469 (2021). https://doi.org/10.3389/fcell.2021.641469.PMID:33732706;PMCID:PMC7957022

    Article  Google Scholar 

  253. 253.

    Zhang, X., Wang, Di., Zhou, Z., Ma, Yi.: Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 238–255 (2021). https://doi.org/10.1109/TPAMI.2019.2929043

    Article  Google Scholar 

  254. 254.

    Zhang, X., Fan, M., Wang, Di.: Peng Zhou*, and Dacheng Tao, Top-k feature selection framework using robust 0–1 integer programming. IEEE Transactions on Neural Networks and Learning Systems. (2020). https://doi.org/10.1109/TNNLS.2020.3009209

    Article  Google Scholar 

  255. 255.

    Zhang, X., Wang, T., Wang, J., Tang, G., Zhao, L.: Pyramid channel-based feature attention network for image dehazing. Comput Vis Image Underst. 197-198, 103003, 202. (https://doi.org/10.1016/j.cviu.2020.103003)

  256. 256.

    Zhang, X., Jiang, R., Wang, T., Wang, J.: Recursive neural network for video deblurring. IEEE Trans. Circuits Syst. Video Technol. (2020). https://doi.org/10.1109/TCSVT.2020.3035722

    Article  Google Scholar 

  257. 257.

    Zhang, X., Wang, T., Luo, W., Huang, P.: Multi-level fusion and attention-guided CNN for image dehazing. IEEE Trans. Circuits Syst. Video Technol. (2020). https://doi.org/10.1109/TCSVT.2020.3046625

    Article  Google Scholar 

  258. 258.

    Zhang, X., et al.: Robust low-rank tensor recovery with rectification and alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence. (2019). p. https://doi.org/10.1109/TPAMI.2019.2929043

  259. 259.

    Zhang, X., et al:. Top-k feature selection framework using robust 0–1 integer programming. IEEE Transactions on Neural Networks and Learning Systems. (2020). p. https://doi.org/10.1109/TNNLS.2020.3009209

  260. 260.

    Zhang, X., et al.: Pyramid channel-based feature attention network for image dehazing. (2020). p. 103003

  261. 261.

    Zhang, X., et al.: Recursive neural network for video deblurring. IEEE Transactions on Circuits and Systems for Video Technology. (2020). p. https://doi.org/10.1109/TCSVT.2020.3035722

  262. 262.

    Zhang, X., et al.: Multi-level fusion and attention-guided CNN for image dehazing. IEEE Transactions on Circuits and Systems for Video Technology. (2020). p. https://doi.org/10.1109/TCSVT.2020.3046625

  263. 263.

    Zhang, X., et al.: Robust feature learning for adversarial defense via hierarchical feature alignment. Information Sciences. (2020). p. https://doi.org/10.1016/j.ins.2020.12.042

  264. 264.

    Slimani, Y., Unal, B., Hannachi, E., Selmi, A., Yildiz, M.: Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3 SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Article  Google Scholar 

  265. 265.

    Ozkantar, N., Yilmaz, E., Soylak, M., Tuzen, M.: Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements. Food Chem. 15(321), 126737 (2020). https://doi.org/10.1016/j.foodchem.2020.126737. (Epub 2 Apr 2020 PMID: 32278275)

    Article  Google Scholar 

  266. 266.

    Saydan Kanberoglu, G., Yilmaz, E., Soylak, M.: Fabrication and characterization of SiO2@Fe3O4@nanodiamonds for vortex-assisted magnetic solid-phase extraction of lead in cigarette samples prior to FAAS detection. J Iran Chem Soc. 17, 1627–1634 (2020). https://doi.org/10.1007/s13738-020-01882-6

    Article  Google Scholar 

  267. 267.

    Krishnan, S., Goud, K.Y.: Magnetic particle bioconjugates: a versatile sensor approach. Magnetochemistry. 5, 64 (2019)

    Article  Google Scholar 

  268. 268.

    Yuvali, D., Narin, I., Soylak, M., Yilmaz, E.: Green synthesis of magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@C-nanodot@GO) for magnetic solid phase extraction of ibuprofen in human blood samples prior to HPLC-DAD determination. J Pharm Biomed Anal. 5(179), 113001 (2020). https://doi.org/10.1016/j.jpba.2019.113001

    Article  Google Scholar 

  269. 269.

    Chen, H., et al.: Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur. Gener. Comput. Syst. 111, 175–198 (2020)

    Article  Google Scholar 

  270. 270.

    Wang, M., Chen, H.J.A.S.C.: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput. 88, 105946 (2020)

  271. 271.

    Xu, Y., et al.: Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf. Sci. 492, 181–203 (2019)

    MathSciNet  Article  Google Scholar 

  272. 272.

    Zhao, X., et al.: Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem. 78, 481–490 (2019)

    Article  Google Scholar 

  273. 273.

    Li, C., et al.: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput. Methods Programs Biomed. 153, 211–225 (2018)

    Article  Google Scholar 

  274. 274.

    Wang, M., et al.: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing. 267, 69–84 (2017)

    Article  Google Scholar 

  275. 275.

    Xia, J., et al.: Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach. Comput. Methods Programs Biomed. 147, 37–49 (2017)

    Article  Google Scholar 

  276. 276.

    Shen, L., et al.: Evolving support vector machines using fruit fly optimization for medical data classification. Knowl.-Based Syst. 96, 61–75 (2016)

    Article  Google Scholar 

  277. 277.

    Chen, H.-L., et al.: An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳ s disease. Neurocomputing. 184, 131–144 (2016)

    Article  Google Scholar 

  278. 278.

    Xu, X., Chen, H.-l.J.S.C.: Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput. 18(4), 797–807 (2014)

  279. 279.

    Zhang, Y., et al.: Boosted binary Harris hawks optimizer and feature selection. Engineering with Computers. 25, 26 (2020)

    Google Scholar 

  280. 280.

    Zhang, Y., et al., Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing. (2020). p. https://doi.org/10.1016/j.neucom.2020.10.038

  281. 281.

    Aydin, F., Yilmaz, E., Ölmez, E., Soylak, M.: Cu2O-CuO ball like/multiwalled carbon nanotube hybrid for fast and effective ultrasound-assisted solid phase extraction of uranium at ultra-trace level prior to ICP-MS detection. Talanta. 15(207), 120295 (2020). https://doi.org/10.1016/j.talanta.2019.120295

    Article  Google Scholar 

  282. 282.

    Karagoz, S., Kiremitler, N.B., Sakir, M., Salem, S., Onses, M.S., Sahmetlioglu, E., Ceylan, A., Yilmaz, E.: Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicol Environ Saf. 30(188), 109856 (2020). https://doi.org/10.1016/j.ecoenv.2019.109856

    Article  Google Scholar 

  283. 283.

    Canlı, A.G., Sürücü, B., Ulusoy, H.İ, Yılmaz, E., Kabir, A., Locatelli, M.: Analytical methodology for trace determination of propoxur and fenitrothion pesticide residues by decanoic acid modified magnetic nanoparticles. Molecules. 24(24), 4621 (2019). https://doi.org/10.3390/molecules24244621

    Article  Google Scholar 

  284. 284.

    Sarp, G., Yilmaz, E.: A flower-like hybrid material composed of Fe3O4, graphene oxide and CdSe nanodots for magnetic solid phase extraction of ibuprofen prior to its quantification by HPLC detection. Mikrochim Acta. 186(11), 744 (2019). https://doi.org/10.1007/s00604-019-3875-x

    Article  Google Scholar 

  285. 285.

    Zhao, D., et al.: Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl.-Based Syst. (2020). p. 106510

  286. 286.

    Tu, J., et al.: Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance. Knowl.-Based Syst. (2021). 212: p. 106642

  287. 287.

    Shan, W., et al.: Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl.-Based Syst. (2020). p. 106728

  288. 288.

    Yu, C., et al.: SGOA: annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers. (2021). p. 1–28

  289. 289.

    Hu, J., et al.: Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl.-Based Syst. (2020). p. 106684

  290. 290.

    Zhao, X., et al.: Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl. Soft Comput. 24, 585–596 (2014)

    Article  Google Scholar 

  291. 291.

    Yu, H., et al.: Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Engineering with Computers. (2020). p. 1–29

  292. 292.

    Di, H.W., Luo, Y.L., Xu, F., Chen, Y.S., Nan, Y.F.: Fabrication and caffeine release from Fe3O4/P(MAA-co-NVP) magnetic microspheres with controllable core-shell architecture. J Biomater Sci Polym Ed. 22(4–6), 557–676 (2011)

    Article  Google Scholar 

  293. 293.

    Dilnawaz, F., Singh, A., Mohanty, C., Sahoo, S.K.: Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials. 31(13), 3694–3706 (2010)

    Article  Google Scholar 

  294. 294.

    Elias, A., Tsourkas, A.: Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hepatol Am Soc Hematol Educ Program. 1, 720–726 (2009)

    Article  Google Scholar 

  295. 295.

    Fattahi, H., Laurent, S., Liu, F., Arsalani, N., Vander Elst, L., Muller, R.N.: Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine. 6(3), 529–544 (2011)

    Article  Google Scholar 

  296. 296.

    Feng, J., Liu, H., Zhang, L., Bhakoo, K., Lu, L.: An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids. Nanotechnology. 21(39), 395101 (2010). https://doi.org/10.1088/0957-4484/21/39/395101

    ADS  Article  Google Scholar 

  297. 297.

    Feng, J., Liu, H., Bhakoo, K.K., Lu, L., Chen, Z.: A metabonomic analysis of organ specific response to USPIO administration. Biomaterials. 32(27), 2558–2569 (2011)

    Article  Google Scholar 

  298. 298.

    Tada, Y., Yang, P.C.: Iron oxide labeling and tracking of extracellular vesicles. Magnetochemistry. 5, 60 (2019)

    Article  Google Scholar 

  299. 299.

    Grief, A.D., Richardson, G.: Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater. 293(1), 455–463 (2005)

    ADS  Article  Google Scholar 

  300. 300.

    ACEA Biosciences Inc. (2015). Available from: https://www.aceabio.com/applications/cytotoxicity/27.02.2018

  301. 301.

    Judson, R., Houck, K., Martin, M., Richard, A.M., Knudsen, T.B., Shah, I., Little, S., Wambaugh, J., Setzer, R.W., Kothya, P., Phuong, J., Filer, D., Smith, D., Reif, D., Rotroff, D., Kleinstreuer, N., Sioes, N., Xia, M., Huang, R., Crofton, K., Thomas, R.S.: Analysis of the effects of cell stress and cytotoxicityon in vitro assay activity across a diverse chemical and assay space. Toxicol. Sci. 152(2), 323–339 (2016)

    Article  Google Scholar 

  302. 302.

    Li, W., Zhou, J., Xu, Y.: Study of the in vitro cytotoxicity testing of medical devices (review). Biomedical Reports. 3, 617–620 (2015)

    Article  Google Scholar 

  303. 303.

    Osthues RM, da Silva SN, Zavaglia CA, Fialho SL. Study of the release potential of the antibiotic gentamicin from microspheres of BCP. Key Engineering Materials. 493:269–274

  304. 304.

    Piao, M.J., Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, J.Y., Choi, J., Hyun, J.W.: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201, 92–100 (2011)

    Article  Google Scholar 

  305. 305.

    Damas, B.A., Wheater, M.A., Bringas, J.S., Hoen, M.M.: Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J. Endod. 37, 372–375 (2011)

    Article  Google Scholar 

  306. 306.

    Kasper, J., Hermanns, M.I., Bantz, C., Maskos, M., Stauber, R., Pohl, C., Unger, R.E., Kirkpatrick, J.C.: Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures. Part Fibre Toxicol. 8(1), 6https://doi.org/10.1186/1743-8977-8-6

  307. 307.

    Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse Fibroblasts. Mutat Res. 745:11–20

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ehsan kianfar.

Ethics declarations

Ethics Approval and Consent to Participate

This article is a review article. The results of the past have been used, and the best results have been presented in different ways.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

kianfar, E. Magnetic Nanoparticles in Targeted Drug Delivery: a Review. J Supercond Nov Magn (2021). https://doi.org/10.1007/s10948-021-05932-9

Download citation

Keywords

  • Magnetic nanoparticles
  • Nanostructures
  • Drug delivery
  • Biomedical
  • Body