Skip to main content
Log in

Effect of Lanthanum Doping on Microstructural, Dielectric and Magnetic Properties of Mn0.4Zn0.6Cd0.2LaxFe1.8-xO4 (0.0 ≤ x ≤ 0.4)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of doping lanthanum (La) ions on the structural, morphological, dielectric and magnetic properties of Mn–Zn–Cd nanoferrites are reported in the present study. The samples with composition as Mn0.4Zn0.6Cd0.2LaxFe1.8-xO4 (0.0 ≤ x ≤ 0.4) were prepared using the conventional co-precipitation route. The analysis of XRD patterns revealed the formation of spinel structure along with the presence of a secondary LaFeO3 phase at the grain boundaries with increasing La content in the composition. The decrease in lattice parameter with doping of La ions supported the observed increase in the theoretical X-ray density of the samples. The SEM and TEM images revealed a slightly bigger crystallite size than obtained from XRD data analysis due to the intergranular diffusion stimulated by a higher sintering temperature of 1300 °C. FTIR analysis revealed the increase in band position from 574.05 to 590.20 cm−1 in the high-frequency band range with increasing La ion doping. The prepared nanoferrite samples were tested to obtain dielectric and magnetic properties over the frequency range of 7.5 × 104 Hz and 3.0 × 107 Hz. A significant increase in dielectric constant and dielectric loss tangent values was observed with increasing La content. On the contrary, the initial permeability and permeability loss values decreased with increasing La content due to the replacement of Fe3+ ions on the octahedral site by La3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Omelyanchik, A., Levada, K., Pshenichnikov, S., Abdolrahim, M., Baricic, M., Kapitunova, A., Galieva, A., Sukhikh, S., Astakhova, L., Antipov, S., Fabiano, B., Peddis, D., Rodionova, V.: Green synthesis of co-zn spinel ferrite nanoparticles: Magnetic and intrinsic antimicrobial properties. Materials (Basel). 13, 1–13 (2020). https://doi.org/10.3390/ma13215014

    Article  Google Scholar 

  2. Bera, P., Lakshmi, R. V., Prakash, B.H., Tiwari, K., Shukla, A., Kundu, A.K., Biswas, K., Barshilia, H.C.: Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFe2O4 and Co0.5M0.5Fe2O4(M = Mn, Ni, and Zn). Phys. Chem. Chem. Phys. 22, 20087–20106 (2020). https://doi.org/10.1039/d0cp03161e

  3. Narang, S.B., Pubby, K.: Nickel spinel ferrites: A review. J. Magn. Magn. Mater. 519, (2021). https://doi.org/10.1016/j.jmmm.2020.167163

  4. Galvãoa, W.S., Netob, D.M.A., Freirec, R.M., Fechined, P.B.A.: Super-paramagnetic nanoparticles with spinel structure: A review of synthesis and biomedical applications. Solid State Phenom. 241, 139–176 (2016). https://doi.org/10.4028/www.scientific.net/SSP.241.139

  5. Kefeni, K.K., Msagati, T.A.M., Nkambule, T.T., Mamba, B.B.: Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C. 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314

    Article  Google Scholar 

  6. Ratkovski, G.P., Do Nascimento, K.T.O., Pedro, G.C., Ratkovski, D.R., Gorza, F.D.S., Da Silva, R.J., Maciel, B.G., Mojica-Sánchez, L.C., De Melo, C.P.: Spinel cobalt ferrite nanoparticles for sensing phosphate ions in aqueous media and biological samples. Langmuir. 36, 2920–2929 (2020). https://doi.org/10.1021/acs.langmuir.9b02901

  7. Pathania, A., Thakur, P., Trukhanov, A.V., Trukhanov, S.V., Panina, L.V., Lüders, U., Thakur, A.: Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application. Results Phys. 15, 102531 (2019). https://doi.org/10.1016/j.rinp.2019.102531

    Article  Google Scholar 

  8. Massoudi, J., Smari, M., Nouri, K., Dhahri, E., Khirouni, K., Bertaina, S., Bessais, L., Hlil, E.K.: Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: From the nanoscale to microscale. RSC Adv. 10, 34556–34580 (2020). https://doi.org/10.1039/d0ra05522k

    Article  ADS  Google Scholar 

  9. Kefeni, K.K., Mamba, B.B.: Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review. Sustain. Mater. Technol. 23, e00140 (2020). https://doi.org/10.1016/j.susmat.2019.e00140

    Article  Google Scholar 

  10. Ravichandran, M., Velumani, S.: Manganese ferrite nanocubes as an MRI contrast agent manganese ferrite nanocubes as an MRI contrast agent. Mater. Res. Express. 7, 016107 (2020)

    Article  ADS  Google Scholar 

  11. Hu, W., Qin, N., Wu, G., Lin, Y., Li, S., Bao, D.: Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134, 14658–14661 (2012)

    Article  Google Scholar 

  12. Chahar, D., Taneja, S., Thakur, P., Thakur, A.: Remarkable resistivity and improved dielectric properties of Co–Zn nanoferrites for high frequency applications. J. Alloys Compd. 155681 (2020). https://doi.org/10.1016/j.jallcom.2020.155681

  13. Panwar, K., Tiwari, S., Bapna, K., Kumar, K., Heda, N.L., Phase, D.M., Ahuja, B.L.: Structural, magnetic and electronic properties of nickel ferrites: Experiment and LCAO calculations. J. Alloys Compd. 831, 154835 (2020). https://doi.org/10.1016/j.jallcom.2020.154835

    Article  Google Scholar 

  14. Bharti, M.K., Gupta, S., Chalia, S., Garg, I., Thakur, P., Thakur, A.: Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: Mini review. J. Supercond. Nov. Magn. 33, 3651–3665 (2020). https://doi.org/10.1007/s10948-020-05657-1

    Article  Google Scholar 

  15. Punia, P., Bharti, M.K., Chalia, S., Dhar, R., Ravelo, B., Thakur, P., Thakur, A.: Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- a review. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.09.050

    Article  Google Scholar 

  16. Smitha, P., Singh, I., Najim, M., Panwar, R.: Development of thin broad band radar absorbing materials using nanostructured spinel ferrites. J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4760-6

    Article  Google Scholar 

  17. Thakur, P., Taneja, S., Sindhu, D., Lüders, U., Sharma, A., Ravelo, B., Thakur, A.: Manganese zinc ferrites: A short review on synthesis and characterization. J. Supercond. Nov. Magn. 33, 1569–1584 (2020)

    Article  Google Scholar 

  18. Winiarska, K., Klimkiewicz, R., Tylus, W., Sobianowska-turek, A., Winiarski, J., Szczygieł, B., Szczygieł, I.: Study of the catalytic activity and surface properties of manganese-zinc ferrite prepared from used batteries. J. Chem. Article ID, 14, (2019)

  19. Thakur, P., Chahar, D., Taneja, S., Bhalla, N., Thakur, A.: A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  Google Scholar 

  20. Sridhar, C.S.L.N., Laxmi, K.S.S.M., Potukuchi, D.M., Lakshmi, C.S.: Dielectric properties of superparamagnetic titanium doped nanophased Mn – Zn ferrites for high frequency applications dielectric properties of superparamagnetic titanium doped nanophased Mn – Zn ferrites for high frequency applications. Mater. Res. Express. 6, 126117 (2019)

    Article  Google Scholar 

  21. Almessiere, M.A., Slimani, Y., Rehman, S., Khan, F.A., Gungunes, C.D., Guner, S., Shirsath, S.E., Baykal, A.: Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced. Arab. J. Chem. 13, 7403–7417 (2020). https://doi.org/10.1016/j.arabjc.2020.08.017

    Article  Google Scholar 

  22. Tanbir, K., Prasad, M., Rakesh, G., Singh, K., Mukherjee, S.: Gd - doped soft Mn – Zn nanoferrites: synthesis, microstructural, magnetic and dielectric characterizations. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-02901-1

    Article  Google Scholar 

  23. Jacobo, S.E., Duhalde, S., Bertorello, H.R.: Rare earth influence on the structural and magnetic properties of NiZn ferrites. J. Magn. Magn. Mater. 272–276, 2253–2254 (2004). https://doi.org/10.1016/j.jmmm.2003.12.564

    Article  ADS  Google Scholar 

  24. Ikram, S., Jacob, J., Mehboob, K., Mahmood, K., Amin, N., Arshad, M.I., Ajaz un Nabi, M.: Role of rare earth metal ions doping on structural, electrical, magnetic, and dielectric behavior of spinel ferrites: A comparative study. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05688-8

  25. Naik, P.P., Tangsali, R.B., Meena, S.S., Yusuf, S.M.: Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.032

    Article  Google Scholar 

  26. Aziz, H.S., Rasheed, S., Khan, R.A., Rahim, A., Nisar, J., Shah, S.M., Iqbal, F., Khan, A.R.: Evaluation of electrical, dielectric and magnetic characteristics of Al-La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016). https://doi.org/10.1039/c5ra20981a

    Article  ADS  Google Scholar 

  27. Thankachan, S., Jacob, B.P., Xavier, S., Mohammed, E.M.: Effect of samarium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. J. Magn. Magn. Mater. 348, 140–145 (2013). https://doi.org/10.1016/j.jmmm.2013.07.065

    Article  ADS  Google Scholar 

  28. Thakur, A., Thakur, P., Hsu, J.H.: Structural, magnetic and electromagnetic characterization of In3+ substituted Mn-Zn nanoferrites. Zeitschrift fur Phys. Chemie. 228, 663–672 (2014). https://doi.org/10.1515/zpch-2014-0477

    Article  Google Scholar 

  29. Thakur, S.S., Pathania, A., Thakur, P., Thakur, A., Hsu, J.H.: Improved structural, electrical and magnetic properties of Mn-Zn-Cd nanoferrites. Ceram. Int. 41, 5072–5078 (2015). https://doi.org/10.1016/j.ceramint.2014.12.077

    Article  Google Scholar 

  30. Singh, B.P., Kumar, A., Areizaga-Martinez, H.I., Vega-Olivencia, C.A., Tomar, M.S.: Synthesis, characterization, and electrocatalytic ability of γ-Fe2O3 nanoparticles for sensing acetaminophen. Indian J. Pure Appl. Phys. 55, 722–728 (2017)

    Google Scholar 

  31. Zhou, X., Jiang, J., Li, L., Xu, F.: Preparation and magnetic properties of La-substituted Zn-Cu-Cr ferrites via a rheological phase reaction method. J. Magn. Magn. Mater. 314, 7–10 (2007). https://doi.org/10.1016/j.jmmm.2007.02.030

    Article  ADS  Google Scholar 

  32. Wang, Y., Xu, F., Li, L., Liu, H., Qiu, H., Jiang, J.: Magnetic properties of La-substituted Ni-Zn-Cr ferrites via rheological phase synthesis. Mater. Chem. Phys. 112, 769–773 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.032

    Article  Google Scholar 

  33. Zhao, L., Yang, H., Yu, L., Cui, Y., Zhao, X., Yan, Y., Feng, S.: The studies of nanocrystalline Ni0.7Mn0.3Nd xFe2-xO4 (x = 0–0.1) ferrites. Phys. Lett. Sect. A Gen. At. Solid State Phys. 332, 268–274 (2004). https://doi.org/10.1016/j.physleta.2004.09.010

  34. Ahmed, M.A., Okasha, N., El-Sayed, M.M.: Enhancement of the physical properties of rare-earth-substituted Mn-Zn ferrites prepared by flash method. Ceram. Int. 33, 49–58 (2007). https://doi.org/10.1016/j.ceramint.2005.07.014

    Article  Google Scholar 

  35. Wu, T., Shen, G., Ding, F., Li, D., Zhong, H.: Effects of La3+ doping on the structure, properties and application of Mn–Zn ferrite. Mater. Chem. Phy. 252, 123328 (2020). https://doi.org/10.1016/j.matchemphys.2020.123328

    Article  Google Scholar 

  36. Dalt, S.D., Takimi, A.S., Volkmer, T.M., Sousa, V.C., Bergmann, C.P.: Magnetic and Mössbauer behavior of the nanostructured MgFe 2 O 4 spinel obtained at low temperature. Powder Technol. 210, 103–108 (2011). https://doi.org/10.1016/j.powtec.2011.03.001

    Article  Google Scholar 

  37. Mathur, P., Thakur, A., Singh, M., Harris, G.: Preparation and characterization of Mn0.4NixZn0.6−xFe2O4 soft spinel ferrites for low and high frequency applications by citrate precursor method, Z. Phys. Chem. 222, 621–633 (2008). https://doi.org/10.1524/zpch.2008.5265

  38. Saini, A., Kumar, P., Ravelo, B., Lallechere, S., Thakur, A., Thakur, P.: Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range. Eng. Sci. Technol. Int. J. 19, 911–916 (2016). https://doi.org/10.1016/j.jestch.2015.12.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, M.K., Chalia, S., Thakur, P. et al. Effect of Lanthanum Doping on Microstructural, Dielectric and Magnetic Properties of Mn0.4Zn0.6Cd0.2LaxFe1.8-xO4 (0.0 ≤ x ≤ 0.4). J Supercond Nov Magn 34, 2591–2600 (2021). https://doi.org/10.1007/s10948-021-05908-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05908-9

Keywords

Navigation