Skip to main content
Log in

Passive Magnetic Shielding of Stacked Joint-free Superconducting Annular Disks Made of REBCO Tapes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The joint-free superconducting annular disks and their stacks, obtained by cutting REBCO (REBa2Cu3O7–δ, RE: rare earth) wide tapes, are proposed as promising passive magnetic shields in this paper. The shielding properties of the disks have been numerically studied using the finite element method. The shielding factor (SF), defined as the ratio between the applied field and the central field, had a frequency-independent value when the magnetic field is much lower than the full penetration field. It appears to have a linear relationship with the ratio of the outer and inner diameter of the disk. Furthermore, various architectures with stacked disks were studied. High shielding factors (SF > 104) under enhanced full penetration fields of above 100 mT can be obtained in the configuration of more disks and proper disk distance (the distance between the disks on each layer). Two stacked disks were designed. In a 1-mT, 1-Hz applied field, the SF of the 4-mm inner diameter discrete stack is 1.21 × 107 (140 dB), and the SF of the 20-mm inner diameter split stack reaches 3.44 × 104 (90 dB). It implies that the stacked REBCO disks have great potential for the application of high-efficiency magnetic shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giunchi, G., et al.: An MgB2 superconducting shield for a cryogenic current comparator working up to 34 K. Supercond. Sci. Technol. 20(7), L39–L41 (2007). https://doi.org/10.1088/0953-2048/20/7/l01

    Article  Google Scholar 

  2. Fagaly, R.L.: Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77(10), 101101 (2006). https://doi.org/10.1063/1.2354545

    Article  ADS  Google Scholar 

  3. Halbertal, D., et al.: Nanoscale thermal imaging of dissipation in quantum systems. Nature. 539(7629), 407–410 (2016). https://doi.org/10.1038/nature19843

    Article  ADS  Google Scholar 

  4. Shanehsazzadeh, F., et al.: Excitation current optimization of fluxgate magnetometers for active magnetic shielding of SQUID-based magnetocardiography system. J. Supercond. Nov. Magn. 30(8), 2323–2328 (2016). https://doi.org/10.1007/s10948-016-3694-9

    Article  Google Scholar 

  5. Dang, H.B., Maloof, A.C., Romalis, M.V.: Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97(3), 031106 (2010). https://doi.org/10.1063/1.3491215

    Article  Google Scholar 

  6. Topal, U.: et al.: Design of fluxgate sensors for different applications from geology to medicine. J. Supercond. Nov. Magn. 32(4), 839–844 (2018). https://doi.org/10.1007/s10948-018-4781-x

    Article  Google Scholar 

  7. Happer, W.: Optical pumping. Rev. Mod. Phys. 44(2), 169–249 (1972). https://doi.org/10.1103/RevModPhys.44.169

    Article  ADS  Google Scholar 

  8. Snigirev, O., et al.: Development of ultra low field nuclear magnetic resonance imaging system using HTS rf SQUID. J. Supercond. Nov. Magn. 24(1-2), 1033–1036 (2010). https://doi.org/10.1007/s10948-010-0876-8

    Article  Google Scholar 

  9. Dong, H., Qiu, L., Shi, W., Chang, B., Yang Qiu, L.X., Liu, C., Zhang, Y.: Ultra-low field magnetic resonance imaging detection with gradient tensor compensation in urban unshielded environment. Appl. Phys. Lett. 102(9), 102602 (2013). https://doi.org/10.1063/1.5003347

    Article  ADS  Google Scholar 

  10. Buckenmaier, K., Pedersen, A., SanGiorgio, P., Scheffler, K., Clarke, J., Inglis, B.: Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume. Neuroimage. 186, 185–191 (2019). https://doi.org/10.1016/j.neuroimage.2018.10.071

    Article  Google Scholar 

  11. Chen, Q.Y., McArdle, J.L., Werner, T.R., Lenz, J.E.: Magnetic shielding properties of YBa2Cu3O7−x superconductors. Appl. Phys. Lett. 57(24), 2603 (1990). https://doi.org/10.1063/1.104187

    Article  ADS  Google Scholar 

  12. Sergeant, P., Dupre, L., Melkebeek, J.: Active and passive magnetic shielding for stray field reduction of an induction heater with axial flux. IEE Proc. -Electr. Power Appl. 152(5), 1359 (2005). https://doi.org/10.1049/ip-epa:20050005

    Article  Google Scholar 

  13. Yusuke Seki, D.S., Ogata, K., Tsukada, K.: Open-type hybrid magnetic shield using high-Tc superconducting wire and flexible magnetic sheets. Appl. Phys. Lett. 82(6), 940–942 (2003). https://doi.org/10.1063/1.1544064

    Article  ADS  Google Scholar 

  14. Gozzelino, L.: et al.: Magnetic characterization of MgB2 bulk superconductor for magnetic field mitigation solutions. J. Supercond. Nov. Magn. 24(1-2), 307–312 (2010). https://doi.org/10.1007/s10948-010-0993-4

    Article  Google Scholar 

  15. Öztürk, A., Kara, A.: Theoretical study of the effect of magnetic field sweep rate and temperature on shielding efficiency in a bulk tube-shaped HTS. J. Supercond. Nov. Magn. 33(11), 3411–3416 (2020). https://doi.org/10.1007/s10948-020-05629-5

    Article  Google Scholar 

  16. Fagnard, J.F., et al.: Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields. Supercond. Sci. Technol. 32(7), 074007 (2019). https://doi.org/10.1088/1361-6668/ab1824

    Article  ADS  Google Scholar 

  17. Denis, S., et al.: Magnetic shielding properties of high-temperature superconducting tubes subjected to axial fields. Supercond. Sci. Technol. 20(3), 192–201 (2007). https://doi.org/10.1088/0953-2048/20/3/014

    Article  ADS  Google Scholar 

  18. Fagnard, J.F., et al.: Magnetic shielding properties of high-Tc superconducting hollow cylinders: model combining experimental data for axial and transverse magnetic field configurations. Supercond. Sci. Technol. 22(10), 105002 (2009). https://doi.org/10.1088/0953-2048/22/10/105002

    Article  ADS  Google Scholar 

  19. Gozzelino, L., et al.: Magnetic shielding properties of MgB2Fe superimposed systems. J. Supercond. Nov. Magn. 26(5), 1513–1516 (2012). https://doi.org/10.1007/s10948-012-1883-8

    Article  Google Scholar 

  20. Gozzelino, L., Gerbaldo, R., Ghigo, G., Laviano, F., Truccato, M.: Comparison of the shielding properties of superconducting and superconducting/ferromagnetic Bi- and multi-layer systems. J. Supercond. Nov. Magn. 30(3), 749–756 (2016). https://doi.org/10.1007/s10948-016-3659-z

    Article  Google Scholar 

  21. Tomków, Ł., Ciszek, M., Chorowski, M.: Combined magnetic screen made of Bi-2223 bulk cylinder and YBCO tape rings—modeling and experiments. J. Appl. Phys. 117(4), 043901 (2015). https://doi.org/10.1063/1.4906399

    Article  ADS  Google Scholar 

  22. Selvamanickam, V., Heydari Gharahcheshmeh, M., Xu, A., Galstyan, E., Delgado, L., Cantoni, C.: High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Appl. Phys. Lett. 106(3), 032601 (2015). https://doi.org/10.1063/1.4906205

    Article  ADS  Google Scholar 

  23. Liu, L., et al.: Fabrication of thick REBCO–coated conductors with high performance on metal tapes by pulsed laser deposition process. J. Supercond. Nov. Magn. 28(2), 403–406 (2014). https://doi.org/10.1007/s10948-014-2730-x

    Article  Google Scholar 

  24. Kvitkovic, J., et al.: Shielding AC magnetic fields using commercial YBa2Cu3O7-x coated conductor tapes. Supercond. Sci. Technol. 22(12), 125009 (2009). https://doi.org/10.1088/0953-2048/22/12/125009

    Article  ADS  Google Scholar 

  25. Gu, C., Zou, S., Han, Z., Qu, T.-M.: Passive magnetic field cancellation device by multiple high-Tc superconducting coils. Rev. Sci. Instrum. 81(4), 045101 (2010). https://doi.org/10.1063/1.3374119

    Article  ADS  Google Scholar 

  26. Gu, C., Chen, S., Pang, T., Qu, T.-M.: Experimental realization of open magnetic shielding. Appl. Phys. Lett. 110(19), 193505 (2017). https://doi.org/10.1063/1.4983490

    Article  ADS  Google Scholar 

  27. Brittles, G.D., et al.: Persistent current joints between technological superconductors. Supercond. Sci. Technol. 28(9), 093001 (2015). https://doi.org/10.1088/0953-2048/28/9/093001

    Article  ADS  Google Scholar 

  28. Chi, C., et al.: Low-frequency magnetic field shielding effect of artificial joint-free REBCO coils. Supercond. Sci. Technol. 33(9), 095001 (2020). https://doi.org/10.1088/1361-6668/ab9aa6

    Article  ADS  Google Scholar 

  29. Levin, G.A., Barnes, P.N., Murphy, J., Brunke, L., Long, J.D., Horwath, J., Turgut, Z.: Persistent current in coils made out of second generation high temperature superconductor wire. Appl. Phys. Lett. 93(6), 062504 (2008). https://doi.org/10.1063/1.2969798

    Article  ADS  Google Scholar 

  30. Wéra, L., Fagnard, J.F., Levin, G.A., Vanderheyden, B., Vanderbemden, P.: Magnetic shielding with YBCO coated conductors: influence of the geometry on its performances. IEEE Trans. Appl. Supercond. 23(3), 8200504 (2013). https://doi.org/10.1109/tasc.2012.2235514

    Article  ADS  Google Scholar 

  31. Wéra, L., et al.: A comparative study of triaxial and uniaxial magnetic shields made out of YBCO coated conductors. Supercond. Sci. Technol. 28(7), 074001 (2015). https://doi.org/10.1088/0953-2048/28/7/074001

    Article  ADS  Google Scholar 

  32. Sheng, J., et al.: A new ring-shape high-temperature superconducting trapped-field magnet. Supercond. Sci. Technol. 30(9), 094002 (2017). https://doi.org/10.1088/1361-6668/aa7a51

    Article  ADS  Google Scholar 

  33. Yuan, X., Wang, Y., Hou, Y., Kan, C., Cai, C., Sun, M.: Conceptual design of a bitter-like superconducting magnet stacked by REBCO annular plates and magnetized by flux pump. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018). https://doi.org/10.1109/TASC.2018.2791937

    Article  Google Scholar 

  34. Hahn, S., et al.: Trapped field characteristics of stacked YBCO thin plates for compact NMR magnets: spatial field distribution and temporal stability. IEEE Trans. Appl. Supercond. 20(3), 1037–1040 (2010). https://doi.org/10.1109/TASC.2010.2043832

    Article  ADS  Google Scholar 

  35. Kim, S.B., Kimoto, T., Hahn, S., Iwasa, Y., Voccio, J., Tomita, M.: Study on optimization of YBCO thin film stack for compact NMR magnets. Phys. C: Superconduct. 484, 295–299 (2013). https://doi.org/10.1016/j.physc.2012.02.042

    Article  ADS  Google Scholar 

  36. Lu, Y.M., Cai, C.B., Liu, Z.Y., Guo, Y.Q., Jiang, H.B., Zhang, Y.J., Li, M.J., Fan, F., Bai, C.Y., Lu, Q., Dou, W.Z., Yang, W.: Advance in long-length REBCO coated conductors prepared by reel-to-reel metalorganic solution and ion-beam-assisted deposition. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019). https://doi.org/10.1109/tasc.2019.2910021

    Article  Google Scholar 

  37. Patel, A., et al.: A trapped field of 17.7 T in a stack of high temperature superconducting tape. Supercond. Sci. Technol. 31(9), 09lt01 (2018). https://doi.org/10.1088/1361-6668/aad34c

    Article  Google Scholar 

  38. Alexis, P.: Malozemoff: Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems. Phys. C: Superconduct. Appl. 530, 65–67 (2016). https://doi.org/10.1016/j.physc.2016.03.017

    Article  Google Scholar 

  39. Hong, Z., et al.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19(12), 1246–1252 (2006). https://doi.org/10.1088/0953-2048/19/12/004

    Article  ADS  Google Scholar 

  40. Ainslie, M.D., et al.: An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines. Supercond. Sci. Technol. 24(4), 045005 (2011). https://doi.org/10.1088/0953-2048/24/4/045005

    Article  ADS  Google Scholar 

  41. Zhang, M., Kim, J.-H., Pamidi, S., Chudy, M., Yuan, W., Coombs, T.A.: Study of second generation, high-temperature superconducting coils: determination of critical current. J. Appl. Phys. 111(8), 083902 (2012). https://doi.org/10.1063/1.3698317

    Article  ADS  Google Scholar 

  42. Lukasz, T., et al.: Distribution of trapped magnetic flux in superconducting stacks magnetised by angled field. J. Supercond. Nov. Magn. 33(5), 1299–1305 (2019). https://doi.org/10.1007/s10948-019-05375-3

    Article  Google Scholar 

  43. Thakur, K.P., et al.: Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable. Supercond. Sci. Technol. 24(6), 065024 (2011). https://doi.org/10.1088/0953-2048/24/6/065024

    Article  ADS  Google Scholar 

  44. Zermeno, V.M.R., Abrahamsen, A.B., Mijatovic, N., Jensen, B.B., Sørensen, M.P.: Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications. J. Appl. Phys. 114(17), 173901 (2013). https://doi.org/10.1063/1.4827375

    Article  ADS  Google Scholar 

  45. Zermeño, V.M.R., Grilli, F.: 3D modeling and simulation of 2G HTS stacks and coils. Supercond. Sci. Technol. 27(4), 044025 (2014). https://doi.org/10.1088/0953-2048/27/4/044025

    Article  ADS  Google Scholar 

  46. Quéval, L., et al.: Numerical models for ac loss calculation in large-scale applications of HTS coated conductors. Supercond. Sci. Technol. 29(2), 024007 (2016). https://doi.org/10.1088/0953-2048/29/2/024007

    Article  ADS  Google Scholar 

  47. Hong, Z., Coombs, T.A.: Numerical modelling of AC loss in coated conductors by finite element software using H formulation. J. Supercond. Nov. Magn. 23(8), 1551–1562 (2010). https://doi.org/10.1007/s10948-010-0812-y

    Article  Google Scholar 

  48. Navau, C., et al.: Critical state in finite type-II superconducting rings. Phys. Rev. B. 71(21), 214507 (2005). https://doi.org/10.1103/PhysRevB.71.214507

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by National Key Research and Development Program (2016YFF0101701), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB25000000), and the Field Foundation of Pre-Research on Equipment under Grant (6140923050202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Zeng or Difan Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Zeng, Z., Zhou, D. et al. Passive Magnetic Shielding of Stacked Joint-free Superconducting Annular Disks Made of REBCO Tapes. J Supercond Nov Magn 34, 2493–2501 (2021). https://doi.org/10.1007/s10948-021-05894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05894-y

Keywords

Navigation