Skip to main content

M-Type Barium Hexaferrite-Based Nanocomposites for EMI Shielding Application: a Review

Abstract

The electromagnetic radiation emission at high radio frequency causes electromagnetic interference (EMI) which is a serious issue. EMI shielding materials are necessary to shield the incoming electromagnetic waves to prevent this problem. Hence, the advancement of high-performance EMI absorbers with flexibility, strong absorption, and extensive bandwidth has gained great attention. Recently, M-type barium hexaferrite as EM interference absorber has gained much interest, owing to their high magnetic loss, high saturation magnetization, flexibility, low cost, high Curie temperature, and strong absorption. Furthermore, due to high density, the incorporation of other dielectric loss fillers such as conductive polymers, graphene, and carbon nanotubes are studied as an essential way to improve the microwave’s absorption. In this review, we present the EMI theory and also summarize modern improvements in the fabrication of barium hexaferrite-based materials comprising substituted barium ferrite and chemical integrations with conductive polymers, graphene, CNTs, and multicomponent composites. The key points of increasing the EMI absorption in barium hexaferrite-based materials are to regulate the EM properties, improving the impedance match, and expanded the loss mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Shen, B., Li, Y., Yi, D., Zhai, W., Wei, X., Zheng, W.: Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon. 102, 154–160 (2016)

    Google Scholar 

  2. Shakir, M.F., Tariq, A., Rehan, Z., Nawab, Y., Rashid, I.A., Afzal, A., Hamid, U., Raza, F., Zubair, K., Rizwan, M.S.: Effect of Nickel-spinal-Ferrites on EMI shielding properties of polystyrene/polyaniline blend. SN Appl. Sci. 2(4), 1–13 (2020)

    Google Scholar 

  3. Saboor, A., Khan, A.N., Cheema, H.M., Yaqoob, K., Shafqat, A.: Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile. J. Mater. Sci. Mater. Electron. 27(9), 9634–9641 (2016)

    Google Scholar 

  4. Mohan, R.R., Varma, S.J., Faisal, M., Jayalekshmi, S.: Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Adv. 5(8), 5917–5923 (2015)

    ADS  Google Scholar 

  5. Umrao, S., Gupta, T.K., Kumar, S., Singh, V.K., Sultania, M.K., Jung, J.H., Oh, I.-K., Srivastava, A.: Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl. Mater. Interfaces. 7(35), 19831–19842 (2015)

    Google Scholar 

  6. Shen, B., Zhai, W., Zheng, W.: Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014)

    Google Scholar 

  7. Shakir, M.F., Rashid, I.A., Tariq, A., Nawab, Y., Afzal, A., Nabeel, M., Naseem, A., Hamid, U.: EMI shielding characteristics of electrically conductive polymer blends of PS/PANI in microwave and IR region. J. Electron. Mater. 49(3), 1660–1665 (2020)

    ADS  Google Scholar 

  8. Shahzad, F., Kumar, P., Yu, S., Lee, S., Kim, Y.-H., Hong, S.M., Koo, C.M.: Sulfur-doped graphene laminates for EMI shielding applications. J. Mater. Chem. C. 3(38), 9802–9810 (2015)

    Google Scholar 

  9. Tian, X., Meng, F., Meng, F., Chen, X., Guo, Y., Wang, Y., Zhu, W., Zhou, Z.: Synergistic enhancement of microwave absorption using hybridized polyaniline@ helical CNTs with dual chirality. ACS Appl. Mater. Interfaces. 9(18), 15711–15718 (2017)

    Google Scholar 

  10. Wan, Y.-J., Zhu, P.-L., Yu, S.-H., Sun, R., Wong, C.-P., Liao, W.-H.: Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon. 122, 74–81 (2017)

    Google Scholar 

  11. Blettner, M., Schlehofer, B., Breckenkamp, J., Kowall, B., Schmiedel, S., Reis, U., Potthoff, P., Schuez, J., Berg-Beckhoff, G.: Mobile phone base stations and adverse health effects: phase 1 of a population-based, cross-sectional study in Germany. Occup. Environ. Med. 66(2), 118–123 (2009)

    Google Scholar 

  12. Roosli, M.: Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review. Environ. Res. 107(2), 277–287 (2008)

    ADS  Google Scholar 

  13. Li, D.-K., Chen, H., Ferber, J.R., Odouli, R., Quesenberry, C.: Exposure to magnetic field non-ionizing radiation and the risk of miscarriage: A prospective cohort study. Sci. Rep. 7(1), 1–7 (2017)

    Google Scholar 

  14. Kumar, P., Narayan Maiti, U., Sikdar, A., Kumar Das, T., Kumar, A., Sudarsan, V.: Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym. Rev. 59(4), 687–738 (2019)

    Google Scholar 

  15. Zhang, Y., Huang, Y., Zhang, T., Chang, H., Xiao, P., Chen, H., Huang, Z., Chen, Y.: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015)

    Google Scholar 

  16. Zeng, Z., Jin, H., Chen, M., Li, W., Zhou, L., Zhang, Z.: Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016)

    Google Scholar 

  17. Balci, O., Polat, E.O., Kakenov, N., Kocabas, C.: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6(1), 1–10 (2015)

    Google Scholar 

  18. Zhang, L., Alvarez, N.T., Zhang, M., Haase, M., Malik, R., Mast, D., Shanov, V.: Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon. 82, 353–359 (2015)

    Google Scholar 

  19. Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A.: EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Results Phys. 14, 102365 (2019)

    Google Scholar 

  20. Meena, R., Bhattachrya, S., Chatterjee, R.: Complex permittivity, permeability and wide band microwave absorbing property of La3+ substituted U-type hexaferrite. J. Magn. Magn. Mater. 322(14), 1923–1928 (2010)

    ADS  Google Scholar 

  21. Bayrakdar, H.: Complex permittivity, complex permeability and microwave absorption properties of ferrite–paraffin polymer composites. J. Magn. Magn. Mater. 323(14), 1882–1885 (2011)

    ADS  Google Scholar 

  22. Liu, Z., Bai, G., Huang, Y., Ma, Y., Du, F., Li, F., Guo, T., Chen, Y.: Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon. 45(4), 821–827 (2007)

    Google Scholar 

  23. Shakir, H.F., Tariq, A., Afzal, A., Rashid, I.A.: Mechanical, thermal and EMI shielding study of electrically conductive polymeric hybrid nano-composites. J. Mater. Sci. Mater. Electron. 30(18), 17382–17392 (2019)

    Google Scholar 

  24. Liu, Y., Song, D., Wu, C., Leng, J.: EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. Part B Eng. 63, 34–40 (2014)

    Google Scholar 

  25. Parmar, S., Ray, B., Date, K., Datar, S.: Modified graphene as a conducting ink for electromagnetic interference shielding. J. Phys. D. Appl. Phys. 52(37), 375302 (2019)

    Google Scholar 

  26. Pawar, S.P., Biswas, S., Kar, G.P., Bose, S.: High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer. 84, 398–419 (2016)

    Google Scholar 

  27. Gulzar, N., Zubair, K., Shakir, M.F., Zahid, M., Nawab, Y., Rehan, Z.: Effect on the EMI shielding properties of cobalt ferrites and coal-Fly-ash based polymer Nanocomposites. J. Supercond. Nov. Magn. 33(11), 3519–3524 (2020)

    Google Scholar 

  28. Mondal, S., Ganguly, S., Rahaman, M., Aldalbahi, A., Chaki, T.K., Khastgir, D., Das, N.C.: A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys. Chem. Chem. Phys. 18(35), 24591–24599 (2016)

    Google Scholar 

  29. Xu, Z., Hao, H.: Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. J. Alloys Compd. 617, 207–213 (2014)

    Google Scholar 

  30. Gairola, S., Verma, V., Kumar, L., Dar, M.A., Annapoorni, S., Kotnala, R.: Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band. Synth. Met. 160(21-22), 2315–2318 (2010)

    Google Scholar 

  31. Gupta, T.K., Singh, B.P., Singh, V.N., Teotia, S., Singh, A.P., Elizabeth, I., Dhakate, S.R., Dhawan, S., Mathur, R.: MnO 2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A. 2(12), 4256–4263 (2014)

    Google Scholar 

  32. Tolvanen, J., Hannu, J., Hietala, M., Kordas, K., Jantunen, H.: Biodegradable multiphase poly (lactic acid)/biochar/graphite composites for electromagnetic interference shielding. Compos. Sci. Technol. 181, 107704 (2019)

    Google Scholar 

  33. Song, W.-L., Cao, M.-S., Lu, M.-M., Bi, S., Wang, C.-Y., Liu, J., Yuan, J., Fan, L.-Z.: Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon. 66, 67–76 (2014)

    Google Scholar 

  34. Abbasi, H., Antunes, M., Velasco, J.I.: Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019)

    Google Scholar 

  35. Kim, Y.-Y., Yun, J.-M., Lee, Y.-S., Kim, H.-I.: Preparation and characteristics of conducting polymer-coated MWCNTs as electromagnetic interference shielding materials. Carbon Lett. 12(1), 48–52 (2011)

    Google Scholar 

  36. Zhang, B., Du, Y., Zhang, P., Zhao, H., Kang, L., Han, X., Xu, P.: Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130(3), 1909–1916 (2013)

    Google Scholar 

  37. Zhu, S., Fu, J., Li, H., Zhu, L., Hu, Y., Xia, W., Zhang, X., Peng, Y., Zhang, J.: Direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials. ACS Nano. 12(4), 3442–3448 (2018)

    Google Scholar 

  38. Qiu, J., Wang, Y., Gu, M.: Effect of Cr substitution on microwave absorption of BaFe12O19. Mater. Lett. 60(21-22), 2728–2732 (2006)

    Google Scholar 

  39. Saad, G.R., Ezz, A.A., Ahmed, H.A.: Cure kinetics, thermal stability, and dielectric properties of epoxy/barium ferrite/polyaniline composites. Thermochim. Acta. 599, 84–94 (2015)

    Google Scholar 

  40. Iqbal, S., Kotnala, G., Shah, J., Ahmad, S.: Barium ferrite nanoparticles: a highly effective EMI shielding material. Materials Research Express. 6(5), 055018 (2019)

    ADS  Google Scholar 

  41. Ghasemi, A., Shirsath, S.E., Liu, X., Morisako, A.: Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites. J. Appl. Phys. 109(7), 07A507 (2011)

    Google Scholar 

  42. Hosseini, S.H., Mohseni, S., Asadnia, A., Kerdari, H.: Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J. Alloys Compd. 509(14), 4682–4687 (2011)

    Google Scholar 

  43. Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon. 140, 696–733 (2018)

    Google Scholar 

  44. Jagatheesan, K., Ramasamy, A., Das, A., Basu, A.: Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. 39, 329–342 (2014).

  45. Pathak, P.P., Kumar, V., Vats, R.P.: Harmful electromagnetic environment near transmission tower. 32, 238–241 (2003).

  46. Joshi, A., Datar, S.: Carbon nanostructure composite for electromagnetic interference shielding. Pramana. 84(6), 1099–1116 (2015)

    ADS  Google Scholar 

  47. Yang, Y., Gupta, M.C., Dudley, K.L., Lawrence, R.W.: Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)

    ADS  Google Scholar 

  48. Shahzad, F., Kumar, P., Kim, Y.-H., Hong, S.M., Koo, C.M.: Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Interfaces. 8(14), 9361–9369 (2016)

    Google Scholar 

  49. Kumar, P., Shahzad, F., Hong, S.M., Koo, C.M.: A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Adv. 6(103), 101283–101287 (2016)

    ADS  Google Scholar 

  50. Modak, P.R., Nandanwar, D.V., Kondawar, S.B.: Conducting polypyrrole/graphene nanocomposites as potential electromagnetic interference shielding materials in the Ku-band. J. Phys Sci 27 137–157 (2016). https://doi.org/10.21315/jps2016.27.3.9.

  51. Gahlout, P., Choudhary, V.: Tailoring of polypyrrole backbone by optimizing synthesis parameters for efficient EMI shielding properties in X-band (8.2–12.4 GHz). Synth. Met. 222, 170–179 (2016)

    Google Scholar 

  52. Chung, D.: Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 39(2), 279–285 (2001)

    Google Scholar 

  53. Cao, M., Wang, X., Cao, W., Fang, X., Wen, B., Yuan, J.: Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small. 14(29), 1800987 (2018)

    Google Scholar 

  54. Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 353(6304), 1137–1140 (2016)

    ADS  Google Scholar 

  55. Singh, A.P., Mishra, M., Chandra, A., Dhawan, S.: Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology. 22(46), 465701 (2011)

    Google Scholar 

  56. Sankaran, S., Deshmukh, K., Ahamed, M.B., Pasha, S.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. A: Appl. Sci. Manuf. 114, 49–71 (2018)

    Google Scholar 

  57. Gonschorek, K.-H., Vick, R.: Skin Effect and Shielding Theory of Schelkunoff. In: Electromagnetic Compatibility for Device Design and System Integration, pp. 377–392. Springer (2010)

  58. Joshi, A., Bajaj, A., Singh, R., Alegaonkar, P., Balasubramanian, K., Datar, S.: Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology. 24(45), 455705 (2013)

    ADS  Google Scholar 

  59. Ren, F., Guo, Z., Shi, Y., Jia, L., Qing, Y., Ren, P., Yan, D.: Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@ CoFe2O4 ternary composite aerogels. J. Alloys Compd. 768, 6–14 (2018)

    Google Scholar 

  60. Wu, H., Qu, S., Lin, K., Qing, Y., Wang, L., Fan, Y., Fu, Q., Zhang, F.: Enhanced low-frequency microwave absorbing property of SCFs@ TiO2 composite. Powder Technol. 333, 153–159 (2018)

    ADS  Google Scholar 

  61. Dong, C., Wang, X., Zhou, P., Liu, T., Xie, J., Deng, L.: Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12− 2xO19 in the Ka band. J. Magn. Magn. Mater. 354, 340–344 (2014)

    ADS  Google Scholar 

  62. Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N.: Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59(2), 280–337 (2019)

    Google Scholar 

  63. Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., Salamati, H.: Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    ADS  Google Scholar 

  64. Gordani, G.R., Ghasemi, A., Saidi, A.: Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram. Int. 40(3), 4945–4952 (2014)

    Google Scholar 

  65. Saini, P., Choudhary, V., Sood, K., Dhawan, S.: Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J. Appl. Polym. Sci. 113(5), 3146–3155 (2009)

    Google Scholar 

  66. Rathi, V., Panwar, V.: Electromagnetic interference shielding analysis of conducting composites in near-and far-field region. IEEE Trans. Electromagn. Compat. 60(6), 1795–1801 (2018)

    Google Scholar 

  67. Al-Saleh, M.H., Sundararaj, U.: X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D. Appl. Phys. 46(3), 035304 (2012)

    ADS  Google Scholar 

  68. Lakshmi, N., Tambe, P.: EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos. Interfaces. 24(9), 861–882 (2017)

    Google Scholar 

  69. Chen, M., Zhang, L., Duan, S., Jing, S., Jiang, H., Luo, M., Li, C.: Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale. 6(7), 3796–3803 (2014)

    ADS  Google Scholar 

  70. Zahid, M., Nawab, Y., Gulzar, N., Rehan, Z.A., Shakir, M.F., Afzal, A., Rashid, I.A., Tariq, A.: Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J. Mater. Sci. Mater. Electron. 31(2), 967–974 (2020)

    Google Scholar 

  71. Park, D.H., Lee, Y.K., Park, S.S., Lee, C.S., Kim, S.H., Kim, W.N.: Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol. Res. 21(8), 905–910 (2013)

    Google Scholar 

  72. Narendra, J., Harnadek, M.: xGnP For electromagnetic interference shielding application. XG Sci. 5, 1–11 (2012).

  73. Al-Ghamdi, A., Al-Hartomy, O.A., Al-Solamy, F., Al-Ghamdi, A.A., El-Tantawy, F.: Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites. J. Appl. Polym. Sci. 127(3), 2227–2234 (2013)

    Google Scholar 

  74. Al-Ghamdi, A.A., El-Tantawy, F.: New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos. A: Appl. Sci. Manuf. 41(11), 1693–1701 (2010)

    Google Scholar 

  75. Al-Ghamdi, A.A., Al-Hartomy, O.A., El-Tantawy, F., Yakuphanoglu, F.: Novel polyvinyl alcohol/silver hybrid nanocomposites for high performance electromagnetic wave shielding effectiveness. Microsyst. Technol. 21(4), 859–868 (2015)

    Google Scholar 

  76. Gupta, A., Choudhary, V.: Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 71(13), 1563–1568 (2011)

  77. Shepherd, P., Mallick, K.K., Green, R.J.: Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 311(2), 683–692 (2007)

    ADS  Google Scholar 

  78. Rashad, M., Ibrahim, I.: Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magn. Mater. 323(16), 2158–2164 (2011)

    ADS  Google Scholar 

  79. Unal, B., Durmus, Z., Baykal, A., Toprak, M., Sozeri, H., Bozkurt, A.: Synthesis, dielectric and magnetic characteristics of poly (1-vinyl-1, 2, 4-triazole)(PVTri)–barium hexaferrite composite. J. Alloys Compd. 509(32), 8199–8206 (2011)

    Google Scholar 

  80. Zhang, J., Fu, J., Li, F., Xie, E., Xue, D., Mellors, N.J., Peng, Y.: BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism. ACS Nano. 6(3), 2273–2280 (2012)

    Google Scholar 

  81. Choopani, S., Keyhan, N., Ghasemi, A., Sharbati, A., Alam, R.S.: Structural, magnetic and microwave absorption characteristics of BaCoxMnxTi2xFe12− 4xO19. Mater. Chem. Phys. 113(2-3), 717–720 (2009)

  82. Rajput, A.B., Hazra, S., Fernado, G.F., Ghosh, N.N.: Synthesis of single-phase barium hexaferrite nanopowder via a novel EDTA precursor-based route and its DC resistivity and magnetic property. Synth. React. Inorganic, Met. Nano-Metal Chem. 41, 1114–1121 (2011). https://doi.org/10.1080/15533174.2011.591355.

  83. Durmus, Z., Unal, B., Toprak, M.S., Aslan, A., Baykal, A.: Synthesis and characterization of poly (1-vinyl-1, 2, 4-triazole)(PVTri)–barium hexaferrite nanocomposite. Phys. B Condens. Matter. 406(11), 2298–2302 (2011)

    ADS  Google Scholar 

  84. Kaur, T., Kumar, S., Narang, S., Srivastava, A.: Radiation losses in microwave Ku region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites. J. Magn. Magn. Mater. 420, 336–342 (2016)

    ADS  Google Scholar 

  85. Rashad, M., Hessien, M., El-Midany, A., Ibrahim, I.: Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method. J. Magn. Magn. Mater. 321(22), 3752–3757 (2009)

    ADS  Google Scholar 

  86. Lisjak, D., Drofenik, M.: The mechanism of the low-temperature formation of barium hexaferrite. J. Eur. Ceram. Soc. 27(16), 4515–4520 (2007)

    Google Scholar 

  87. Pashkova, E., Solovyova, E., Kotenko, I., Kolodiazhnyi, T., Belous, A.: Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite. J. Magn. Magn. Mater. 323(20), 2497–2503 (2011)

    ADS  Google Scholar 

  88. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Google Scholar 

  89. Paimozd, E., Ghasemi, A., Jafari, A., Sheikh, H.: Influence of acid catalysts on the structural and magnetic properties of nanocrystalline barium ferrite prepared by sol–gel method. J. Magn. Magn. Mater. 320(23), L137–L140 (2008)

    ADS  Google Scholar 

  90. Santos, J., Macedo, M., Cunha, F., Sasaki, J., Duque, J.: BaFe12O19 thin film grown by an aqueous sol–gel process. Microelectron. J. 34(5-8), 565–567 (2003)

    Google Scholar 

  91. Drofenik, M., Kristl, M., Žnidaršič, A., Hanžel, D., Lisjak, D.: Hydrothermal synthesis of Ba-hexaferrite nanoparticles. J. Am. Ceram. Soc. 90(7), 2057–2061 (2007)

    Google Scholar 

  92. Du, Y., Gao, H., Liu, X., Wang, J., Xu, P., Han, X.: Solvent-free synthesis of hexagonal barium ferrite (BaFe 12 O 19) particles. J. Mater. Sci. 45(9), 2442–2448 (2010)

    ADS  Google Scholar 

  93. Feng, H., Bai, D., Tan, L., Chen, N., Wang, Y.: Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites. J. Magn. Magn. Mater. 433, 1–7 (2017)

    ADS  Google Scholar 

  94. Thomassin, J.-M., Jerome, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C.: Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013)

    Google Scholar 

  95. Fortunati, E., D’angelo, F., Martino, S., Orlacchio, A., Kenny, J., Armentano, I.: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon. 49(7), 2370–2379 (2011)

    Google Scholar 

  96. Choudary, V., Dhawan, S., Saini, P.: Polymer based nanocomposites for electromagnetic interference (EMI) shielding. EMI Shielding Theory and Development of New Materials; Research Signpost: Kerala, India, 67-100 (2012).

  97. Nguyen, Q.T., Baird, D.G.: Preparation of polymer–clay nanocomposites and their properties. Adv. Polym. Technol.: J. Polym. Process. Inst. 25(4), 270–285 (2006)

    Google Scholar 

  98. Chae, D.W., Kim, B.C.: Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 16(11-12), 846–850 (2005)

    Google Scholar 

  99. Pan, W., Zou, H.: Characterization of PAN/ATO nanocomposites prepared by solution blending. Bull. Mater. Sci. 31(5), 807–811 (2008)

    Google Scholar 

  100. Rane, A.V., Kanny, K., Abitha, V., Thomas, S.: Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials, pp. 121–139. Elsevier (2018)

  101. Sözeri, H., Deligöz, H., Kavas, H., Baykal, A.: Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M= Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40(6), 8645–8657 (2014)

    Google Scholar 

  102. Ghasemi, A., Hossienpour, A., Morisako, A., Saatchi, A., Salehi, M.: Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 302(2), 429–435 (2006)

    ADS  Google Scholar 

  103. Kanagesan, S., Jesurani, S., Velmurugan, R., Prabu, S., Kalaivani, T.: Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexaferrite. Mater. Res. Bull. 47(2), 188–192 (2012)

    Google Scholar 

  104. Wang, L., Yu, H., Ren, X., Xu, G.: Magnetic and microwave absorption properties of BaMnxCo1− xTiFe10O19. J. Alloys Compd. 588, 212–216 (2014)

    Google Scholar 

  105. Chang, S., Kangning, S., Pengfei, C.: Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324(5), 802–805 (2012)

    ADS  Google Scholar 

  106. Dosoudil, R., Usakova, M., Franek, J., Slama, J., Gruskova, A.: Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites. IEEE Trans. Magn. 46(2), 436–439 (2010)

    ADS  Google Scholar 

  107. Abbas, S., Dixit, A., Chatterjee, R., Goel, T.: Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J. Magn. Magn. Mater. 309(1), 20–24 (2007)

    ADS  Google Scholar 

  108. Anand, S., Pauline, S., Prabagar, C.J.: Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polym Test. 86, 106504 (2020). https://doi.org/10.1016/j.polymertesting.2020.106504.

  109. Choudhary, H.K., Kumar, R., Pawar, S.P., Bose, S., Sahoo, B.: Effect of microstructure and magnetic properties of Ba-Pb-hexaferrite particles on EMI shielding behavior of Ba-Pb-hexaferrite-polyaniline-wax nanocomposites. J. Electron. Mater. 49(3), 1618–1629 (2020)

    ADS  Google Scholar 

  110. Liu, J., Zhang, J., Li, Y., Zhang, M.: Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness. Mater. Chem. Phys. 163, 470–477 (2015)

    Google Scholar 

  111. Ghzaiel, T.B., Dhaoui, W., Schoenstein, F., Talbot, P., Mazaleyrat, F.: Substitution effect of Me= Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J. Alloys Compd. 692, 774–786 (2017)

    Google Scholar 

  112. Singh, K., Ohlan, A., Pham, V.H., Balasubramaniyan, R., Varshney, S., Jang, J., Hur, S.H., Choi, W.M., Kumar, M., Dhawan, S.: Nanostructured graphene/Fe 3 O 4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale. 5(6), 2411–2420 (2013)

    ADS  Google Scholar 

  113. Li, Y., Cao, W.-q., Yuan, J., Wang, D.-w., Cao, M.-s.: Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C. 3(36), 9276–9282 (2015)

    Google Scholar 

  114. Iqbal, S., Khatoon, H., Kotnala, R.K., Ahmad, S.: Bi-doped barium ferrite decorated polythiophene nanocomposite: influence of Bi-doping on structure, morphology, thermal and EMI shielding behavior for X-band. J Mater Sci. 55, 15894–15907 (2020). https://doi.org/10.1007/s10853-020-05134-z.

  115. Kaur, T., Kumar, S., Sharma, J., Srivastava, A.: Radiation losses in the microwave Ku band in magneto-electric nanocomposites. Beilstein J. Nanotechnol. 6(1), 1700–1707 (2015)

    Google Scholar 

  116. Ghasemi, A.: Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magn. Magn. Mater. 323(23), 3133–3137 (2011)

    ADS  Google Scholar 

  117. Wen, B., Cao, M.-S., Hou, Z.-L., Song, W.-L., Zhang, L., Lu, M.-M., Jin, H.-B., Fang, X.-Y., Wang, W.-Z., Yuan, J.: Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon. 65, 124–139 (2013)

    Google Scholar 

  118. Nikmanesh, H., Moradi, M., Bordbar, G.H., Alam, R.S.: Synthesis of multi-walled carbon nanotube/doped barium hexaferrite nanocomposites: An investigation of structural, magnetic and microwave absorption properties. Ceram. Int. 42(13), 14342–14349 (2016)

    Google Scholar 

  119. Shiri, N., Amirabadizadeh, A., Ghasemi, A.: Influence of carbon nanotubes on structural, magnetic and electromagnetic characteristics of MnMgTiZr substituted barium hexaferrite nanoparticles. J. Alloys Compd. 690, 759–764 (2017)

    Google Scholar 

  120. Tadjarodi, A., Kerdari, H., Imani, M.: Ba0. 69Sr0. 17Cd0. 07Zn0. 07Fe12O19 nanostrucutres/conducting polyaniline nanocomposites; synthesis, characterization and microwave absorption performance. J. Alloys Compd. 554, 284–292 (2013)

    Google Scholar 

  121. Wang, F., Zhang, G., Yang, H., Liu, M., Yang, Y.: Low temperature sintering and magnetoelectric properties of laminated BaTiO3/BiY2Fe5O12 composites. J. Alloys Compd. 632, 460–466 (2015)

    Google Scholar 

  122. Phang, S.W., Tadokoro, M., Watanabe, J., Kuramoto, N.: Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym. Adv. Technol. 20(6), 550–557 (2009)

    Google Scholar 

  123. Zhu, Y.-F., Ni, Q.-Q., Fu, Y.-Q., Natsuki, T.: Synthesis and microwave absorption properties of electromagnetic functionalized Fe 3 O 4–polyaniline hollow sphere nanocomposites produced by electrostatic self-assembly. J. Nanopart. Res. 15(10), 1988 (2013)

    ADS  Google Scholar 

  124. Kuo, H., Hsui, T.-F., Tuo, Y., Yuan, C.: Microwave adsorption of core–shell structured Sr (MnTi) x Fe 12− 2x O 19/PANI composites. J. Mater. Sci. 47(5), 2264–2270 (2012)

    ADS  Google Scholar 

  125. Yuan, C., Hong, Y.: Microwave adsorption of core–shell structure polyaniline/SrFe 12 O 19 composites. J. Mater. Sci. 45(13), 3470–3476 (2010)

    ADS  Google Scholar 

  126. Luo, J., Xu, Y., Gao, D.: Synthesis, characterization and microwave absorption properties of polyaniline/Sm-doped strontium ferrite nanocomposite. Solid State Sci. 37, 40–46 (2014)

    ADS  Google Scholar 

  127. Yang, C., Li, H., Xiong, D., Cao, Z.: Hollow polyaniline/Fe3O4 microsphere composites: Preparation, characterization, and applications in microwave absorption. React. Funct. Polym. 69(2), 137–144 (2009)

    Google Scholar 

  128. Chitra, P., Muthusamy, A., Jayaprakash, R., Kumar, E.R.: Effect of ultrasonication on particle size and magnetic properties of polyaniline NiCoFe2O4 nanocomposites. J. Magn. Magn. Mater. 366, 55–63 (2014)

    ADS  Google Scholar 

  129. Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)

    Google Scholar 

  130. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.: Conducting ferromagnetic copolymer of aniline and 3, 4-ethylenedioxythiophene containing nanocrystalline barium ferrite particles. J. Appl. Polym. Sci. 108(4), 2218–2225 (2008)

    Google Scholar 

  131. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.: Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl. Phys. Lett. 93(5), 053114 (2008)

    ADS  Google Scholar 

  132. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.K.: Microwave absorption behavior of core− shell structured poly (3, 4-ethylenedioxy thiophene)− barium ferrite nanocomposites. ACS Appl. Mater. Interfaces. 2(3), 927–933 (2010)

    Google Scholar 

  133. Zhao, D.-L., Shen, Z.-M.: Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21-22), 3704–3706 (2008)

    Google Scholar 

  134. Wang, G., Gao, Z., Tang, S., Chen, C., Duan, F., Zhao, S., Lin, S., Feng, Y., Zhou, L., Qin, Y.: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano. 6(12), 11009–11017 (2012)

    Google Scholar 

  135. Sun, G., Yao, K., Liao, H., Niu, Z., Liu, Z.: Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix. Int. J. Electron. 87(6), 735–740 (2000)

    Google Scholar 

  136. Bahar, E.: Cross polarization of lateral waves propagating along a free-space–chiral planar interface: applications to identification of optically active materials. JOSA B. 28(5), 1194–1199 (2011)

    ADS  Google Scholar 

  137. Reina, G., Milella, A., Underwood, J.: Self-learning classification of radar features for scene understanding. Robot. Auton. Syst. 60(11), 1377–1388 (2012)

    Google Scholar 

  138. Kim, Y.-J., Kim, S.-S.: Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5~ 40 GHz). J. Electroceram. 24(4), 314–318 (2010)

    Google Scholar 

  139. Xu, F., Ma, L., Gan, M., Tang, J., Li, Z., Zheng, J., Zhang, J., Xie, S., Yin, H., Shen, X.: Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties. J. Alloys Compd. 593, 24–29 (2014)

    Google Scholar 

  140. Ting, T.-H., Wu, K.-H.: Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J. Magn. Magn. Mater. 322(15), 2160–2166 (2010)

    ADS  Google Scholar 

  141. Choudhary, H.K., Pawar, S.P., Kumar, R., Anupama, A., Bose, S., Sahoo, B.: Mechanistic insight into the critical concentration of barium hexaferrite and the conductive polymeric phase with respect to synergistically electromagnetic interference (EMI) shielding. ChemistrySelect. 2(2), 830–841 (2017)

    Google Scholar 

  142. Yang, C., Gung, Y., Hung, W., Ting, T., Wu, K.: Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites. Compos. Sci. Technol. 70(3), 466–471 (2010)

    Google Scholar 

  143. Liu, J.R., Itoh, M., Machida, K.-i.: Magnetic and electromagnetic wave absorption properties of α-Fe∕ Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett. 88(6), 062503 (2006)

    ADS  Google Scholar 

  144. Tyagi, S., Baskey, H.B., Agarwala, R.C., Agarwala, V., Shami, T.C.: Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram. Int. 37(7), 2631–2641 (2011)

    Google Scholar 

  145. Yang, H., Ye, T., Lin, Y., Liu, M.: Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline. Synth. Met. 210, 245–250 (2015)

    Google Scholar 

  146. Iqbal, S., Shah, J., Kotnala, R., Ahmad, S.: Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J. Alloys Compd. 779, 487–496 (2019)

    Google Scholar 

  147. Shen, B., Zhai, W., Tao, M., Ling, J., Zheng, W.: Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces. 5(21), 11383–11391 (2013)

    Google Scholar 

  148. Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.K.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014)

    Google Scholar 

  149. Sambyal, P., Dhawan, S., Gairola, P., Chauhan, S.S., Gairola, S.: Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18(5), 611–618 (2018)

    ADS  Google Scholar 

  150. Wang, Y., Huang, Y., Wang, Q., He, Q., Chen, L.: Preparation and electromagnetic properties of Polyaniline (polypyrrole)-BaFe12O19/Ni0. 8Zn0. 2Fe2O4 ferrite nanocomposites. Appl. Surf. Sci. 259, 486–493 (2012)

    ADS  Google Scholar 

  151. Chung, D.: Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon. 50(9), 3342–3353 (2012)

    Google Scholar 

  152. Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., Eklund, P.C.: Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006)

    ADS  Google Scholar 

  153. Maiti, S., Shrivastava, N.K., Suin, S., Khatua, B.: Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl. Mater. Interfaces. 5(11), 4712–4724 (2013)

    Google Scholar 

  154. Li, X., Yi, H., Zhang, J., Feng, J., Li, F., Xue, D., Zhang, H., Peng, Y., Mellors, N.J.: Fe 3 O 4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. J. Nanopart. Res. 15(3), 1472 (2013)

    ADS  Google Scholar 

  155. Liu, J., Che, R., Chen, H., Zhang, F., Xia, F., Wu, Q., Wang, M.: Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small. 8(8), 1214–1221 (2012)

    Google Scholar 

  156. Zhang, X.-J., Wang, G.-S., Cao, W.-Q., Wei, Y.-Z., Liang, J.-F., Guo, L., Cao, M.-S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces. 6(10), 7471–7478 (2014)

    Google Scholar 

  157. Vinayasree, S., Soloman, M., Sunny, V., Mohanan, P., Kurian, P., Joy, P., Anantharaman, M.: Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications. J. Appl. Phys. 116(2), 024902 (2014)

    ADS  Google Scholar 

  158. Zhao, T., Ji, X., Jin, W., Guo, S., Zhao, H., Yang, W., Wang, X., Xiong, C., Dang, A., Li, H.: Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite. J. Alloys Compd. 703, 424–430 (2017)

    Google Scholar 

  159. Zhao, T., Hou, C., Zhang, H., Zhu, R., She, S., Wang, J., Li, T., Liu, Z., Wei, B.: Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014)

    ADS  Google Scholar 

  160. Kumar, S., Datt, G., Santhosh Kumar, A., Abhyankar, A.: Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films. J. Appl. Phys. 120(16), 164901 (2016)

    ADS  Google Scholar 

  161. Aal, N.A., Al-Hazmi, F., Al-Ghamdi, A.A., Al-Ghamdi, A.A., El-Tantawy, F., Yakuphanoglu, F.: A novel facile synthesis and electromagnetic wave shielding effectiveness at microwave frequency of graphene oxide paper. Microsyst. Technol. 21(10), 2155–2163 (2015)

    Google Scholar 

  162. Yakuphanoglu, F., Al-Ghamdi, A.A., El-Tantawy, F.: Electromagnetic interference shielding properties of nanocomposites for commercial electronic devices. Microsyst. Technol. 21(11), 2397–2405 (2015)

    Google Scholar 

  163. Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q., Sun, X.: One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52–55 (2014)

    Google Scholar 

  164. Cao, M.-S., Wang, X.-X., Cao, W.-Q., Yuan, J.: Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C. 3(26), 6589–6599 (2015)

    Google Scholar 

  165. Verma, M., Singh, A.P., Sambyal, P., Singh, B.P., Dhawan, S., Choudhary, V.: Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys. Chem. Chem. Phys. 17(3), 1610–1618 (2015)

    Google Scholar 

  166. Durmus, Z., Durmus, A., Kavas, H.: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201–1213 (2015)

    ADS  Google Scholar 

  167. He, H., Luo, F., Qian, N., Wang, N.: Improved microwave absorption and electromagnetic properties of BaFe12O19-poly (vinylidene fluoride) composites by incorporating reduced graphene oxides. J. Appl. Phys. 117(8), 085502 (2015)

    ADS  Google Scholar 

  168. Yang, Y., Wang, J.: Synthesis and characterization of a microwave absorbing material based on magnetoplumbite ferrite and graphite nanosheet. Mater. Lett. 124, 151–154 (2014)

    Google Scholar 

  169. Zubair, K., Shakir, M.F., Afzal, A., Rehan, Z.A., Nawab, Y.: Effect of Barium Hexaferrites and Thermally Reduced Graphene Oxide on EMI Shielding Properties in Polymer Composites. J Supercond Nov Magn (2020). https://doi.org/10.1007/s10948-020-05669-x.

  170. Li, Y., Chen, G., Li, Q., Qiu, G., Liu, X.: Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloys Compd. 509(10), 4104–4107 (2011)

    Google Scholar 

  171. Wang, Y., Huang, Y., Wang, Q., He, Q., Zong, M.: Preparation of graphene/BaFe 12 O 19–Ni 0.8 Zn 0.2 Fe 2 O 4 nanocomposite and its microwave absorbing properties. J. Sol-Gel Sci. Technol. 67(2), 344–350 (2013)

    Google Scholar 

  172. Yang, H., Ye, T., Lin, Y., Liu, M.: Preparation and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite. Appl. Surf. Sci. 357, 1289–1293 (2015)

    ADS  Google Scholar 

  173. Bhattacharya, P., Sahoo, S., Das, C.: Microwave absorption behaviour of MWCNT based nanocomposites in X-band region. Express Polym Lett. 7, 212–223 (2013).

  174. Briceno, S., Silva, P., Molina, W., Brämer-Escamilla, W., Alcala, O., Canizales, E.: Magnetic properties of NiFe2O4/carbon nanofibers from Venezuelan petcoke. J. Magn. Magn. Mater. 381, 10–13 (2015)

    ADS  Google Scholar 

  175. Afghahi, S.S.S., Peymanfar, R., Javanshir, S., Atassi, Y., Jafarian, M.: Synthesis, characterization and microwave characteristics of ternary nanocomposite of MWCNTs/doped Sr-hexaferrite/PANI. J. Magn. Magn. Mater. 423, 152–157 (2017)

    ADS  Google Scholar 

  176. Estevez, D., Qin, F., Quan, L., Luo, Y., Zheng, X., Wang, H., Peng, H.: Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable microwave absorption. Carbon. 132, 486–494 (2018)

    Google Scholar 

  177. Quan, L., Qin, F., Estevez, D., Wang, H., Peng, H.: Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon. 125, 630–639 (2017)

    Google Scholar 

  178. Li, D., Zhou, X., Luo, K., Yuan, B., Liu, Y., Sun, L., Liu, Z.: Investigation on the microwave absorbing property of Fe3O4/CNFs synthesized by chemical co-precipitation. Int. J. Electrochem. Sci. 10(10), 8097–8102 (2015)

    Google Scholar 

  179. Afghahi, S.S.S., Jafarian, M., Atassi, Y.: A promising lightweight multicomponent microwave absorber based on doped barium hexaferrite/calcium titanate/multiwalled carbon nanotubes. J. Nanopart. Res. 18(7), 192 (2016)

    ADS  Google Scholar 

  180. Zhang, H., Hong, M., Chen, P., Xie, A., Shen, Y.: 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J. Alloys Compd. 665, 381–387 (2016)

    Google Scholar 

  181. Zhang, Y., Huang, Y., Chen, H., Huang, Z., Yang, Y., Xiao, P., Zhou, Y., Chen, Y.: Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon. 105, 438–447 (2016)

    Google Scholar 

  182. Gu, J., Li, Y., Liang, C., Tang, Y., Tang, L., Zhang, Y., Kong, J., Liu, H., Guo, Z.: Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. J. Mater. Chem. C. 6(28), 7652–7660 (2018)

    Google Scholar 

  183. Qiu, H., Luo, X., Wang, J., Zhong, X., Qi, S.: Synthesis and characterization of ternary polyaniline/barium ferrite/reduced graphene oxide composite as microwave-absorbing material. J. Electron. Mater. 48(7), 4400–4408 (2019)

    ADS  Google Scholar 

  184. Zhao, T., Jin, W., Ji, X., Yan, H., Jiang, Y., Dong, Y., Yang, Y., Dang, A., Li, H., Li, T.: Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties. J. Alloys Compd. 712, 59–68 (2017)

    Google Scholar 

  185. Zhao, T., Ji, X., Jin, W., Xiong, C., Ma, W., Wang, C., Duan, S., Dang, A., Li, H., Li, T.: Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D graphene aerogel/BaFe12O19 nanocomposite. J. Alloys Compd. 708, 115–122 (2017)

    Google Scholar 

  186. Ren, Y., Yan, H., Li, X., Lv, S., Zhu, H., Sun, G., Peng, S.: Enhanced saturation magnetization and microwave absorption magnetic properties of Mn-Co-Zr substituted BaM ferrite. J. Alloys Compd. 693, 1257–1260 (2017)

    Google Scholar 

  187. Jia, X., Wang, J., Zhu, X., Wang, T., Yang, F., Dong, W., Wang, G., Yang, H., Wei, F.: Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2017)

    Google Scholar 

  188. Wang, Y., Wu, X., Zhang, W., Luo, C., Li, J., Wang, Y.: Fabrication of flower-like Ni0. 5Co0. 5 (OH) 2@ PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)

    Google Scholar 

  189. Jiao, S., Wu, M., Yu, X., Hu, H., Bai, Z., Dai, P., Jiang, T., Bi, H., Li, G.: RGO/BaFe12O19/Fe3O4 nanocomposite as microwave absorbent with lamellar structures and improved polarization interfaces. Mater. Res. Bull. 108, 89–95 (2018)

    Google Scholar 

  190. Afzali, A., Mottaghitalab, V., Afghahi, S.S.S., Jafarian, M., Atassi, Y.: Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency. J. Magn. Magn. Mater. 442, 224–230 (2017)

    ADS  Google Scholar 

  191. Meng, X., Zhu, Y., Xu, S., Liu, T.: Facile synthesis of shell–core polyaniline/SrFe 12 O 19 composites and magnetic properties. RSC Adv. 6(6), 4946–4949 (2016)

    ADS  Google Scholar 

  192. Akman, O., Durmus, Z., Kavas, H., Aktas, B., Kurtan, U., Baykal, A., Sözeri, H.: Effect of conducting polymer layer on microwave absorption properties of BaFe12O19— TiO2 composite. Phys. Status Solidi A. 210(2), 395–402 (2013)

    ADS  Google Scholar 

  193. Akman, O., Kavas, H., Baykal, A., Durmus, Z., Aktaş, B., Sözeri, H.: Microwave Absorption Properties of BaFe 12 O 19-TiO 2 Composite Coated with Conducting Polymer. J. Supercond. Nov. Magn. 26(4), 1369–1373 (2013)

    Google Scholar 

  194. Yang, C., Gung, Y., Shih, C., Hung, W., Wu, K.: Synthesis, infrared and microwave absorbing properties of (BaFe12O19+ BaTiO3)/polyaniline composite. J. Magn. Magn. Mater. 323(7), 933–938 (2011)

    ADS  Google Scholar 

  195. Bhattacharya, P., Das, C.K.: In situ synthesis and characterization of CuFe10Al2O19/MWCNT nanocomposites for supercapacitor and microwave-absorbing applications. Ind. Eng. Chem. Res. 52(28), 9594–9606 (2013)

    Google Scholar 

  196. Xu, P., Han, X., Wang, C., Zhou, D., Lv, Z., Wen, A., Wang, X., Zhang, B.: Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B. 112(34), 10443–10448 (2008)

    Google Scholar 

  197. Yang, H., Ye, T., Lin, Y., Liu, M.: Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19–CoFe2O4 powders. J. Alloys Compd. 653, 135–139 (2015)

    Google Scholar 

  198. Xu, P., Han, X., Jiang, J., Wang, X., Li, X., Wen, A.: Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites. J. Phys. Chem. C. 111(34), 12603–12608 (2007)

    Google Scholar 

  199. Peymanfar, R., Ahmadi, M., Javanshir, S.: Tailoring GO/BaFe12O19/La0. 5Sr0. 5MnO3 ternary nanocomposite and investigation of its microwave characteristics. Mater. Res. Express. 6(8), 085063 (2019)

    ADS  Google Scholar 

  200. Zahari, M.H., Guan, B.H., Cheng, E.M., Che Mansor, M.F., Rahim, H.A.: Electromagnetic interference (EMI) shielding performance of the ternary composite based on BaFe 12 O 19, MWCNT and PANI at the Ku-Band. Prog. Electromagn. Res. 52, 111–118 (2016)

    Google Scholar 

  201. Gairola, P., Gairola, S., Kumar, V., Singh, K., Dhawan, S.: Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference. Synth. Met. 221, 326–331 (2016)

    Google Scholar 

  202. Deng, L., Zhou, P., Xie, J., Zhang, L.: Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101(10), 103916 (2007)

    ADS  Google Scholar 

  203. He, L., Chang, P., Yang, H., Xie, H., Zhang, C.: Giant enhancement of microwave absorption property in spherical and flake-like BaFe12O19/Polyvinyl Butyral ternary composite. Mater. Lett. 195, 45–47 (2017)

    Google Scholar 

  204. Sun, X., Sheng, L., Yang, J., An, K., Yu, L., Zhao, X.: Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption. J. Mater. Sci. Mater. Electron. 28(17), 12900–12908 (2017)

    Google Scholar 

  205. Wang, Y., Huang, Y., Ding, J.: Synthesis and electromagnetic absorption properties of polypyrrole/BaFe12O19–Ni0. 8Zn0. 2Fe2O4/multi-walled carbon nanotube composites. Mater. Sci. Semicond. Process. 26, 632–641 (2014)

    Google Scholar 

  206. Ren, X., Fan, H., Cheng, Y.: Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites. Appl. Phys. A. 122(5), 506 (2016)

    ADS  Google Scholar 

  207. Li, Q., Pang, J., Wang, B., Tao, D., Xu, X., Sun, L., Zhai, J.: Preparation, characterization and microwave absorption properties of barium-ferrite-coated fly-ash cenospheres. Adv. Powder Technol. 24(1), 288–294 (2013)

    Google Scholar 

  208. Xin-Chun, Y., Rui-Jiang, L., Xiang-Qian, S., Fu-Zhan, S., Mao-Xiang, J., Xian-Feng, M.: Enhancement of microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers. Chin. Phys. B. 22(5), 058101 (2013)

  209. Chen, W., Zheng, J., Li, Y.: Synthesis and electromagnetic characteristics of BaFe12O19/ZnO composite material. J. Alloys Compd. 513, 420–424 (2012)

    Google Scholar 

  210. Mohammed, J., Carol, T.T.T., Hafeez, H., Basandrai, D., Bhadu, G.R., Godara, S.K., Narang, S., Srivastava, A.: Electromagnetic interference (EMI) shielding, microwave absorption, and optical sensing properties of BaM/CCTO composites in Ku-band. Results in Physics. 13, 102307 (2019)

    Google Scholar 

  211. Sutradhar, S., Saha, S., Javed, S.: Shielding Effectiveness Study of Barium Hexaferrite-Incorporated, β-Phase-Improved Poly (vinylidene fluoride) Composite Film: A Metamaterial Useful for the Reduction of Electromagnetic Pollution. ACS Appl. Mater. Interfaces. 11(26), 23701–23713 (2019)

    Google Scholar 

  212. Ozah, S., Bhattacharyya, N.: Nanosized barium hexaferrite in novolac phenolic resin as microwave absorber for X-band application. J. Magn. Magn. Mater. 342, 92–99 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Fayzan Shakir or Z. A. Rehan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• M-type barium hexaferrite having a hexagonal magneto-plumbite structure with high saturation magnetization as well as magnetic anisotropy, chemically stable and as magnetic material and microwave absorber finds the scope for its application.

• The barium hexaferrite-based nanocomposites show high EMI SE with a dominant mechanism of absorption and reflection loss (RL) in a wide range of frequency and effective bandwidth of absorption.

• It is fundamental to have a balance between the concentration of the fillers to achieve impedance match and high absorption.

• Due to the light in weight, cheap, and broad absorption bandwidth of civil electromagnetic waves, the reported nanocomposites could be utilized to protect from the EM pollution in our daily life.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahid, M., Siddique, S., Anum, R. et al. M-Type Barium Hexaferrite-Based Nanocomposites for EMI Shielding Application: a Review. J Supercond Nov Magn 34, 1019–1045 (2021). https://doi.org/10.1007/s10948-021-05859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05859-1

Keywords

  • Barium ferrites;
  • EMI shielding;
  • Nanocomposites;
  • Nanoparticles