Skip to main content
Log in

M-Type Barium Hexaferrite-Based Nanocomposites for EMI Shielding Application: a Review

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electromagnetic radiation emission at high radio frequency causes electromagnetic interference (EMI) which is a serious issue. EMI shielding materials are necessary to shield the incoming electromagnetic waves to prevent this problem. Hence, the advancement of high-performance EMI absorbers with flexibility, strong absorption, and extensive bandwidth has gained great attention. Recently, M-type barium hexaferrite as EM interference absorber has gained much interest, owing to their high magnetic loss, high saturation magnetization, flexibility, low cost, high Curie temperature, and strong absorption. Furthermore, due to high density, the incorporation of other dielectric loss fillers such as conductive polymers, graphene, and carbon nanotubes are studied as an essential way to improve the microwave’s absorption. In this review, we present the EMI theory and also summarize modern improvements in the fabrication of barium hexaferrite-based materials comprising substituted barium ferrite and chemical integrations with conductive polymers, graphene, CNTs, and multicomponent composites. The key points of increasing the EMI absorption in barium hexaferrite-based materials are to regulate the EM properties, improving the impedance match, and expanded the loss mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shen, B., Li, Y., Yi, D., Zhai, W., Wei, X., Zheng, W.: Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon. 102, 154–160 (2016)

    Article  Google Scholar 

  2. Shakir, M.F., Tariq, A., Rehan, Z., Nawab, Y., Rashid, I.A., Afzal, A., Hamid, U., Raza, F., Zubair, K., Rizwan, M.S.: Effect of Nickel-spinal-Ferrites on EMI shielding properties of polystyrene/polyaniline blend. SN Appl. Sci. 2(4), 1–13 (2020)

    Article  Google Scholar 

  3. Saboor, A., Khan, A.N., Cheema, H.M., Yaqoob, K., Shafqat, A.: Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile. J. Mater. Sci. Mater. Electron. 27(9), 9634–9641 (2016)

    Article  Google Scholar 

  4. Mohan, R.R., Varma, S.J., Faisal, M., Jayalekshmi, S.: Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Adv. 5(8), 5917–5923 (2015)

    Article  ADS  Google Scholar 

  5. Umrao, S., Gupta, T.K., Kumar, S., Singh, V.K., Sultania, M.K., Jung, J.H., Oh, I.-K., Srivastava, A.: Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl. Mater. Interfaces. 7(35), 19831–19842 (2015)

    Article  Google Scholar 

  6. Shen, B., Zhai, W., Zheng, W.: Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014)

    Article  Google Scholar 

  7. Shakir, M.F., Rashid, I.A., Tariq, A., Nawab, Y., Afzal, A., Nabeel, M., Naseem, A., Hamid, U.: EMI shielding characteristics of electrically conductive polymer blends of PS/PANI in microwave and IR region. J. Electron. Mater. 49(3), 1660–1665 (2020)

    Article  ADS  Google Scholar 

  8. Shahzad, F., Kumar, P., Yu, S., Lee, S., Kim, Y.-H., Hong, S.M., Koo, C.M.: Sulfur-doped graphene laminates for EMI shielding applications. J. Mater. Chem. C. 3(38), 9802–9810 (2015)

    Article  Google Scholar 

  9. Tian, X., Meng, F., Meng, F., Chen, X., Guo, Y., Wang, Y., Zhu, W., Zhou, Z.: Synergistic enhancement of microwave absorption using hybridized polyaniline@ helical CNTs with dual chirality. ACS Appl. Mater. Interfaces. 9(18), 15711–15718 (2017)

    Article  Google Scholar 

  10. Wan, Y.-J., Zhu, P.-L., Yu, S.-H., Sun, R., Wong, C.-P., Liao, W.-H.: Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon. 122, 74–81 (2017)

    Article  Google Scholar 

  11. Blettner, M., Schlehofer, B., Breckenkamp, J., Kowall, B., Schmiedel, S., Reis, U., Potthoff, P., Schuez, J., Berg-Beckhoff, G.: Mobile phone base stations and adverse health effects: phase 1 of a population-based, cross-sectional study in Germany. Occup. Environ. Med. 66(2), 118–123 (2009)

    Article  Google Scholar 

  12. Roosli, M.: Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review. Environ. Res. 107(2), 277–287 (2008)

    Article  ADS  Google Scholar 

  13. Li, D.-K., Chen, H., Ferber, J.R., Odouli, R., Quesenberry, C.: Exposure to magnetic field non-ionizing radiation and the risk of miscarriage: A prospective cohort study. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  14. Kumar, P., Narayan Maiti, U., Sikdar, A., Kumar Das, T., Kumar, A., Sudarsan, V.: Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym. Rev. 59(4), 687–738 (2019)

    Article  Google Scholar 

  15. Zhang, Y., Huang, Y., Zhang, T., Chang, H., Xiao, P., Chen, H., Huang, Z., Chen, Y.: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015)

    Article  Google Scholar 

  16. Zeng, Z., Jin, H., Chen, M., Li, W., Zhou, L., Zhang, Z.: Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016)

    Article  Google Scholar 

  17. Balci, O., Polat, E.O., Kakenov, N., Kocabas, C.: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6(1), 1–10 (2015)

    Google Scholar 

  18. Zhang, L., Alvarez, N.T., Zhang, M., Haase, M., Malik, R., Mast, D., Shanov, V.: Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon. 82, 353–359 (2015)

    Article  Google Scholar 

  19. Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A.: EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Results Phys. 14, 102365 (2019)

    Article  Google Scholar 

  20. Meena, R., Bhattachrya, S., Chatterjee, R.: Complex permittivity, permeability and wide band microwave absorbing property of La3+ substituted U-type hexaferrite. J. Magn. Magn. Mater. 322(14), 1923–1928 (2010)

    Article  ADS  Google Scholar 

  21. Bayrakdar, H.: Complex permittivity, complex permeability and microwave absorption properties of ferrite–paraffin polymer composites. J. Magn. Magn. Mater. 323(14), 1882–1885 (2011)

    Article  ADS  Google Scholar 

  22. Liu, Z., Bai, G., Huang, Y., Ma, Y., Du, F., Li, F., Guo, T., Chen, Y.: Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon. 45(4), 821–827 (2007)

    Article  Google Scholar 

  23. Shakir, H.F., Tariq, A., Afzal, A., Rashid, I.A.: Mechanical, thermal and EMI shielding study of electrically conductive polymeric hybrid nano-composites. J. Mater. Sci. Mater. Electron. 30(18), 17382–17392 (2019)

    Article  Google Scholar 

  24. Liu, Y., Song, D., Wu, C., Leng, J.: EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. Part B Eng. 63, 34–40 (2014)

    Article  Google Scholar 

  25. Parmar, S., Ray, B., Date, K., Datar, S.: Modified graphene as a conducting ink for electromagnetic interference shielding. J. Phys. D. Appl. Phys. 52(37), 375302 (2019)

    Article  Google Scholar 

  26. Pawar, S.P., Biswas, S., Kar, G.P., Bose, S.: High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer. 84, 398–419 (2016)

    Article  Google Scholar 

  27. Gulzar, N., Zubair, K., Shakir, M.F., Zahid, M., Nawab, Y., Rehan, Z.: Effect on the EMI shielding properties of cobalt ferrites and coal-Fly-ash based polymer Nanocomposites. J. Supercond. Nov. Magn. 33(11), 3519–3524 (2020)

    Article  Google Scholar 

  28. Mondal, S., Ganguly, S., Rahaman, M., Aldalbahi, A., Chaki, T.K., Khastgir, D., Das, N.C.: A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys. Chem. Chem. Phys. 18(35), 24591–24599 (2016)

    Article  Google Scholar 

  29. Xu, Z., Hao, H.: Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. J. Alloys Compd. 617, 207–213 (2014)

    Article  Google Scholar 

  30. Gairola, S., Verma, V., Kumar, L., Dar, M.A., Annapoorni, S., Kotnala, R.: Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band. Synth. Met. 160(21-22), 2315–2318 (2010)

    Article  Google Scholar 

  31. Gupta, T.K., Singh, B.P., Singh, V.N., Teotia, S., Singh, A.P., Elizabeth, I., Dhakate, S.R., Dhawan, S., Mathur, R.: MnO 2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A. 2(12), 4256–4263 (2014)

    Article  Google Scholar 

  32. Tolvanen, J., Hannu, J., Hietala, M., Kordas, K., Jantunen, H.: Biodegradable multiphase poly (lactic acid)/biochar/graphite composites for electromagnetic interference shielding. Compos. Sci. Technol. 181, 107704 (2019)

    Article  Google Scholar 

  33. Song, W.-L., Cao, M.-S., Lu, M.-M., Bi, S., Wang, C.-Y., Liu, J., Yuan, J., Fan, L.-Z.: Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon. 66, 67–76 (2014)

    Article  Google Scholar 

  34. Abbasi, H., Antunes, M., Velasco, J.I.: Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019)

    Article  Google Scholar 

  35. Kim, Y.-Y., Yun, J.-M., Lee, Y.-S., Kim, H.-I.: Preparation and characteristics of conducting polymer-coated MWCNTs as electromagnetic interference shielding materials. Carbon Lett. 12(1), 48–52 (2011)

    Article  Google Scholar 

  36. Zhang, B., Du, Y., Zhang, P., Zhao, H., Kang, L., Han, X., Xu, P.: Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130(3), 1909–1916 (2013)

    Article  Google Scholar 

  37. Zhu, S., Fu, J., Li, H., Zhu, L., Hu, Y., Xia, W., Zhang, X., Peng, Y., Zhang, J.: Direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials. ACS Nano. 12(4), 3442–3448 (2018)

    Article  Google Scholar 

  38. Qiu, J., Wang, Y., Gu, M.: Effect of Cr substitution on microwave absorption of BaFe12O19. Mater. Lett. 60(21-22), 2728–2732 (2006)

    Article  Google Scholar 

  39. Saad, G.R., Ezz, A.A., Ahmed, H.A.: Cure kinetics, thermal stability, and dielectric properties of epoxy/barium ferrite/polyaniline composites. Thermochim. Acta. 599, 84–94 (2015)

    Article  Google Scholar 

  40. Iqbal, S., Kotnala, G., Shah, J., Ahmad, S.: Barium ferrite nanoparticles: a highly effective EMI shielding material. Materials Research Express. 6(5), 055018 (2019)

    Article  ADS  Google Scholar 

  41. Ghasemi, A., Shirsath, S.E., Liu, X., Morisako, A.: Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites. J. Appl. Phys. 109(7), 07A507 (2011)

    Article  Google Scholar 

  42. Hosseini, S.H., Mohseni, S., Asadnia, A., Kerdari, H.: Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J. Alloys Compd. 509(14), 4682–4687 (2011)

    Article  Google Scholar 

  43. Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon. 140, 696–733 (2018)

    Article  Google Scholar 

  44. Jagatheesan, K., Ramasamy, A., Das, A., Basu, A.: Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. 39, 329–342 (2014).

  45. Pathak, P.P., Kumar, V., Vats, R.P.: Harmful electromagnetic environment near transmission tower. 32, 238–241 (2003).

  46. Joshi, A., Datar, S.: Carbon nanostructure composite for electromagnetic interference shielding. Pramana. 84(6), 1099–1116 (2015)

    Article  ADS  Google Scholar 

  47. Yang, Y., Gupta, M.C., Dudley, K.L., Lawrence, R.W.: Novel carbon nanotube− polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)

    Article  ADS  Google Scholar 

  48. Shahzad, F., Kumar, P., Kim, Y.-H., Hong, S.M., Koo, C.M.: Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Interfaces. 8(14), 9361–9369 (2016)

    Article  Google Scholar 

  49. Kumar, P., Shahzad, F., Hong, S.M., Koo, C.M.: A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Adv. 6(103), 101283–101287 (2016)

    Article  ADS  Google Scholar 

  50. Modak, P.R., Nandanwar, D.V., Kondawar, S.B.: Conducting polypyrrole/graphene nanocomposites as potential electromagnetic interference shielding materials in the Ku-band. J. Phys Sci 27 137–157 (2016). https://doi.org/10.21315/jps2016.27.3.9.

  51. Gahlout, P., Choudhary, V.: Tailoring of polypyrrole backbone by optimizing synthesis parameters for efficient EMI shielding properties in X-band (8.2–12.4 GHz). Synth. Met. 222, 170–179 (2016)

    Article  Google Scholar 

  52. Chung, D.: Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 39(2), 279–285 (2001)

    Article  Google Scholar 

  53. Cao, M., Wang, X., Cao, W., Fang, X., Wen, B., Yuan, J.: Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small. 14(29), 1800987 (2018)

    Article  Google Scholar 

  54. Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 353(6304), 1137–1140 (2016)

    Article  ADS  Google Scholar 

  55. Singh, A.P., Mishra, M., Chandra, A., Dhawan, S.: Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology. 22(46), 465701 (2011)

    Article  Google Scholar 

  56. Sankaran, S., Deshmukh, K., Ahamed, M.B., Pasha, S.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. A: Appl. Sci. Manuf. 114, 49–71 (2018)

    Article  Google Scholar 

  57. Gonschorek, K.-H., Vick, R.: Skin Effect and Shielding Theory of Schelkunoff. In: Electromagnetic Compatibility for Device Design and System Integration, pp. 377–392. Springer (2010)

  58. Joshi, A., Bajaj, A., Singh, R., Alegaonkar, P., Balasubramanian, K., Datar, S.: Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology. 24(45), 455705 (2013)

    Article  ADS  Google Scholar 

  59. Ren, F., Guo, Z., Shi, Y., Jia, L., Qing, Y., Ren, P., Yan, D.: Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@ CoFe2O4 ternary composite aerogels. J. Alloys Compd. 768, 6–14 (2018)

    Article  Google Scholar 

  60. Wu, H., Qu, S., Lin, K., Qing, Y., Wang, L., Fan, Y., Fu, Q., Zhang, F.: Enhanced low-frequency microwave absorbing property of SCFs@ TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  ADS  Google Scholar 

  61. Dong, C., Wang, X., Zhou, P., Liu, T., Xie, J., Deng, L.: Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12− 2xO19 in the Ka band. J. Magn. Magn. Mater. 354, 340–344 (2014)

    Article  ADS  Google Scholar 

  62. Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N.: Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59(2), 280–337 (2019)

    Article  Google Scholar 

  63. Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., Salamati, H.: Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  ADS  Google Scholar 

  64. Gordani, G.R., Ghasemi, A., Saidi, A.: Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram. Int. 40(3), 4945–4952 (2014)

    Article  Google Scholar 

  65. Saini, P., Choudhary, V., Sood, K., Dhawan, S.: Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J. Appl. Polym. Sci. 113(5), 3146–3155 (2009)

    Article  Google Scholar 

  66. Rathi, V., Panwar, V.: Electromagnetic interference shielding analysis of conducting composites in near-and far-field region. IEEE Trans. Electromagn. Compat. 60(6), 1795–1801 (2018)

    Article  Google Scholar 

  67. Al-Saleh, M.H., Sundararaj, U.: X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D. Appl. Phys. 46(3), 035304 (2012)

    Article  ADS  Google Scholar 

  68. Lakshmi, N., Tambe, P.: EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos. Interfaces. 24(9), 861–882 (2017)

    Article  Google Scholar 

  69. Chen, M., Zhang, L., Duan, S., Jing, S., Jiang, H., Luo, M., Li, C.: Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale. 6(7), 3796–3803 (2014)

    Article  ADS  Google Scholar 

  70. Zahid, M., Nawab, Y., Gulzar, N., Rehan, Z.A., Shakir, M.F., Afzal, A., Rashid, I.A., Tariq, A.: Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J. Mater. Sci. Mater. Electron. 31(2), 967–974 (2020)

    Article  Google Scholar 

  71. Park, D.H., Lee, Y.K., Park, S.S., Lee, C.S., Kim, S.H., Kim, W.N.: Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol. Res. 21(8), 905–910 (2013)

    Article  Google Scholar 

  72. Narendra, J., Harnadek, M.: xGnP For electromagnetic interference shielding application. XG Sci. 5, 1–11 (2012).

  73. Al-Ghamdi, A., Al-Hartomy, O.A., Al-Solamy, F., Al-Ghamdi, A.A., El-Tantawy, F.: Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites. J. Appl. Polym. Sci. 127(3), 2227–2234 (2013)

    Article  Google Scholar 

  74. Al-Ghamdi, A.A., El-Tantawy, F.: New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos. A: Appl. Sci. Manuf. 41(11), 1693–1701 (2010)

    Article  Google Scholar 

  75. Al-Ghamdi, A.A., Al-Hartomy, O.A., El-Tantawy, F., Yakuphanoglu, F.: Novel polyvinyl alcohol/silver hybrid nanocomposites for high performance electromagnetic wave shielding effectiveness. Microsyst. Technol. 21(4), 859–868 (2015)

    Article  Google Scholar 

  76. Gupta, A., Choudhary, V.: Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 71(13), 1563–1568 (2011)

  77. Shepherd, P., Mallick, K.K., Green, R.J.: Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 311(2), 683–692 (2007)

    Article  ADS  Google Scholar 

  78. Rashad, M., Ibrahim, I.: Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magn. Mater. 323(16), 2158–2164 (2011)

    Article  ADS  Google Scholar 

  79. Unal, B., Durmus, Z., Baykal, A., Toprak, M., Sozeri, H., Bozkurt, A.: Synthesis, dielectric and magnetic characteristics of poly (1-vinyl-1, 2, 4-triazole)(PVTri)–barium hexaferrite composite. J. Alloys Compd. 509(32), 8199–8206 (2011)

    Article  Google Scholar 

  80. Zhang, J., Fu, J., Li, F., Xie, E., Xue, D., Mellors, N.J., Peng, Y.: BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism. ACS Nano. 6(3), 2273–2280 (2012)

    Article  Google Scholar 

  81. Choopani, S., Keyhan, N., Ghasemi, A., Sharbati, A., Alam, R.S.: Structural, magnetic and microwave absorption characteristics of BaCoxMnxTi2xFe12− 4xO19. Mater. Chem. Phys. 113(2-3), 717–720 (2009)

  82. Rajput, A.B., Hazra, S., Fernado, G.F., Ghosh, N.N.: Synthesis of single-phase barium hexaferrite nanopowder via a novel EDTA precursor-based route and its DC resistivity and magnetic property. Synth. React. Inorganic, Met. Nano-Metal Chem. 41, 1114–1121 (2011). https://doi.org/10.1080/15533174.2011.591355.

  83. Durmus, Z., Unal, B., Toprak, M.S., Aslan, A., Baykal, A.: Synthesis and characterization of poly (1-vinyl-1, 2, 4-triazole)(PVTri)–barium hexaferrite nanocomposite. Phys. B Condens. Matter. 406(11), 2298–2302 (2011)

    Article  ADS  Google Scholar 

  84. Kaur, T., Kumar, S., Narang, S., Srivastava, A.: Radiation losses in microwave Ku region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites. J. Magn. Magn. Mater. 420, 336–342 (2016)

    Article  ADS  Google Scholar 

  85. Rashad, M., Hessien, M., El-Midany, A., Ibrahim, I.: Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method. J. Magn. Magn. Mater. 321(22), 3752–3757 (2009)

    Article  ADS  Google Scholar 

  86. Lisjak, D., Drofenik, M.: The mechanism of the low-temperature formation of barium hexaferrite. J. Eur. Ceram. Soc. 27(16), 4515–4520 (2007)

    Article  Google Scholar 

  87. Pashkova, E., Solovyova, E., Kotenko, I., Kolodiazhnyi, T., Belous, A.: Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite. J. Magn. Magn. Mater. 323(20), 2497–2503 (2011)

    Article  ADS  Google Scholar 

  88. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  89. Paimozd, E., Ghasemi, A., Jafari, A., Sheikh, H.: Influence of acid catalysts on the structural and magnetic properties of nanocrystalline barium ferrite prepared by sol–gel method. J. Magn. Magn. Mater. 320(23), L137–L140 (2008)

    Article  ADS  Google Scholar 

  90. Santos, J., Macedo, M., Cunha, F., Sasaki, J., Duque, J.: BaFe12O19 thin film grown by an aqueous sol–gel process. Microelectron. J. 34(5-8), 565–567 (2003)

    Article  Google Scholar 

  91. Drofenik, M., Kristl, M., Žnidaršič, A., Hanžel, D., Lisjak, D.: Hydrothermal synthesis of Ba-hexaferrite nanoparticles. J. Am. Ceram. Soc. 90(7), 2057–2061 (2007)

    Article  Google Scholar 

  92. Du, Y., Gao, H., Liu, X., Wang, J., Xu, P., Han, X.: Solvent-free synthesis of hexagonal barium ferrite (BaFe 12 O 19) particles. J. Mater. Sci. 45(9), 2442–2448 (2010)

    Article  ADS  Google Scholar 

  93. Feng, H., Bai, D., Tan, L., Chen, N., Wang, Y.: Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites. J. Magn. Magn. Mater. 433, 1–7 (2017)

    Article  ADS  Google Scholar 

  94. Thomassin, J.-M., Jerome, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C.: Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013)

    Article  Google Scholar 

  95. Fortunati, E., D’angelo, F., Martino, S., Orlacchio, A., Kenny, J., Armentano, I.: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon. 49(7), 2370–2379 (2011)

    Article  Google Scholar 

  96. Choudary, V., Dhawan, S., Saini, P.: Polymer based nanocomposites for electromagnetic interference (EMI) shielding. EMI Shielding Theory and Development of New Materials; Research Signpost: Kerala, India, 67-100 (2012).

  97. Nguyen, Q.T., Baird, D.G.: Preparation of polymer–clay nanocomposites and their properties. Adv. Polym. Technol.: J. Polym. Process. Inst. 25(4), 270–285 (2006)

    Article  Google Scholar 

  98. Chae, D.W., Kim, B.C.: Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 16(11-12), 846–850 (2005)

    Article  Google Scholar 

  99. Pan, W., Zou, H.: Characterization of PAN/ATO nanocomposites prepared by solution blending. Bull. Mater. Sci. 31(5), 807–811 (2008)

    Article  Google Scholar 

  100. Rane, A.V., Kanny, K., Abitha, V., Thomas, S.: Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials, pp. 121–139. Elsevier (2018)

  101. Sözeri, H., Deligöz, H., Kavas, H., Baykal, A.: Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M= Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40(6), 8645–8657 (2014)

    Article  Google Scholar 

  102. Ghasemi, A., Hossienpour, A., Morisako, A., Saatchi, A., Salehi, M.: Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 302(2), 429–435 (2006)

    Article  ADS  Google Scholar 

  103. Kanagesan, S., Jesurani, S., Velmurugan, R., Prabu, S., Kalaivani, T.: Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexaferrite. Mater. Res. Bull. 47(2), 188–192 (2012)

    Article  Google Scholar 

  104. Wang, L., Yu, H., Ren, X., Xu, G.: Magnetic and microwave absorption properties of BaMnxCo1− xTiFe10O19. J. Alloys Compd. 588, 212–216 (2014)

    Article  Google Scholar 

  105. Chang, S., Kangning, S., Pengfei, C.: Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324(5), 802–805 (2012)

    Article  ADS  Google Scholar 

  106. Dosoudil, R., Usakova, M., Franek, J., Slama, J., Gruskova, A.: Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites. IEEE Trans. Magn. 46(2), 436–439 (2010)

    Article  ADS  Google Scholar 

  107. Abbas, S., Dixit, A., Chatterjee, R., Goel, T.: Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J. Magn. Magn. Mater. 309(1), 20–24 (2007)

    Article  ADS  Google Scholar 

  108. Anand, S., Pauline, S., Prabagar, C.J.: Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polym Test. 86, 106504 (2020). https://doi.org/10.1016/j.polymertesting.2020.106504.

  109. Choudhary, H.K., Kumar, R., Pawar, S.P., Bose, S., Sahoo, B.: Effect of microstructure and magnetic properties of Ba-Pb-hexaferrite particles on EMI shielding behavior of Ba-Pb-hexaferrite-polyaniline-wax nanocomposites. J. Electron. Mater. 49(3), 1618–1629 (2020)

    Article  ADS  Google Scholar 

  110. Liu, J., Zhang, J., Li, Y., Zhang, M.: Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness. Mater. Chem. Phys. 163, 470–477 (2015)

    Article  Google Scholar 

  111. Ghzaiel, T.B., Dhaoui, W., Schoenstein, F., Talbot, P., Mazaleyrat, F.: Substitution effect of Me= Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J. Alloys Compd. 692, 774–786 (2017)

    Article  Google Scholar 

  112. Singh, K., Ohlan, A., Pham, V.H., Balasubramaniyan, R., Varshney, S., Jang, J., Hur, S.H., Choi, W.M., Kumar, M., Dhawan, S.: Nanostructured graphene/Fe 3 O 4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale. 5(6), 2411–2420 (2013)

    Article  ADS  Google Scholar 

  113. Li, Y., Cao, W.-q., Yuan, J., Wang, D.-w., Cao, M.-s.: Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C. 3(36), 9276–9282 (2015)

    Article  Google Scholar 

  114. Iqbal, S., Khatoon, H., Kotnala, R.K., Ahmad, S.: Bi-doped barium ferrite decorated polythiophene nanocomposite: influence of Bi-doping on structure, morphology, thermal and EMI shielding behavior for X-band. J Mater Sci. 55, 15894–15907 (2020). https://doi.org/10.1007/s10853-020-05134-z.

  115. Kaur, T., Kumar, S., Sharma, J., Srivastava, A.: Radiation losses in the microwave Ku band in magneto-electric nanocomposites. Beilstein J. Nanotechnol. 6(1), 1700–1707 (2015)

    Article  Google Scholar 

  116. Ghasemi, A.: Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magn. Magn. Mater. 323(23), 3133–3137 (2011)

    Article  ADS  Google Scholar 

  117. Wen, B., Cao, M.-S., Hou, Z.-L., Song, W.-L., Zhang, L., Lu, M.-M., Jin, H.-B., Fang, X.-Y., Wang, W.-Z., Yuan, J.: Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon. 65, 124–139 (2013)

    Article  Google Scholar 

  118. Nikmanesh, H., Moradi, M., Bordbar, G.H., Alam, R.S.: Synthesis of multi-walled carbon nanotube/doped barium hexaferrite nanocomposites: An investigation of structural, magnetic and microwave absorption properties. Ceram. Int. 42(13), 14342–14349 (2016)

    Article  Google Scholar 

  119. Shiri, N., Amirabadizadeh, A., Ghasemi, A.: Influence of carbon nanotubes on structural, magnetic and electromagnetic characteristics of MnMgTiZr substituted barium hexaferrite nanoparticles. J. Alloys Compd. 690, 759–764 (2017)

    Article  Google Scholar 

  120. Tadjarodi, A., Kerdari, H., Imani, M.: Ba0. 69Sr0. 17Cd0. 07Zn0. 07Fe12O19 nanostrucutres/conducting polyaniline nanocomposites; synthesis, characterization and microwave absorption performance. J. Alloys Compd. 554, 284–292 (2013)

    Article  Google Scholar 

  121. Wang, F., Zhang, G., Yang, H., Liu, M., Yang, Y.: Low temperature sintering and magnetoelectric properties of laminated BaTiO3/BiY2Fe5O12 composites. J. Alloys Compd. 632, 460–466 (2015)

    Article  Google Scholar 

  122. Phang, S.W., Tadokoro, M., Watanabe, J., Kuramoto, N.: Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym. Adv. Technol. 20(6), 550–557 (2009)

    Article  Google Scholar 

  123. Zhu, Y.-F., Ni, Q.-Q., Fu, Y.-Q., Natsuki, T.: Synthesis and microwave absorption properties of electromagnetic functionalized Fe 3 O 4–polyaniline hollow sphere nanocomposites produced by electrostatic self-assembly. J. Nanopart. Res. 15(10), 1988 (2013)

    Article  ADS  Google Scholar 

  124. Kuo, H., Hsui, T.-F., Tuo, Y., Yuan, C.: Microwave adsorption of core–shell structured Sr (MnTi) x Fe 12− 2x O 19/PANI composites. J. Mater. Sci. 47(5), 2264–2270 (2012)

    Article  ADS  Google Scholar 

  125. Yuan, C., Hong, Y.: Microwave adsorption of core–shell structure polyaniline/SrFe 12 O 19 composites. J. Mater. Sci. 45(13), 3470–3476 (2010)

    Article  ADS  Google Scholar 

  126. Luo, J., Xu, Y., Gao, D.: Synthesis, characterization and microwave absorption properties of polyaniline/Sm-doped strontium ferrite nanocomposite. Solid State Sci. 37, 40–46 (2014)

    Article  ADS  Google Scholar 

  127. Yang, C., Li, H., Xiong, D., Cao, Z.: Hollow polyaniline/Fe3O4 microsphere composites: Preparation, characterization, and applications in microwave absorption. React. Funct. Polym. 69(2), 137–144 (2009)

    Article  Google Scholar 

  128. Chitra, P., Muthusamy, A., Jayaprakash, R., Kumar, E.R.: Effect of ultrasonication on particle size and magnetic properties of polyaniline NiCoFe2O4 nanocomposites. J. Magn. Magn. Mater. 366, 55–63 (2014)

    Article  ADS  Google Scholar 

  129. Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)

    Article  Google Scholar 

  130. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.: Conducting ferromagnetic copolymer of aniline and 3, 4-ethylenedioxythiophene containing nanocrystalline barium ferrite particles. J. Appl. Polym. Sci. 108(4), 2218–2225 (2008)

    Article  Google Scholar 

  131. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.: Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl. Phys. Lett. 93(5), 053114 (2008)

    Article  ADS  Google Scholar 

  132. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.K.: Microwave absorption behavior of core− shell structured poly (3, 4-ethylenedioxy thiophene)− barium ferrite nanocomposites. ACS Appl. Mater. Interfaces. 2(3), 927–933 (2010)

    Article  Google Scholar 

  133. Zhao, D.-L., Shen, Z.-M.: Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21-22), 3704–3706 (2008)

    Article  Google Scholar 

  134. Wang, G., Gao, Z., Tang, S., Chen, C., Duan, F., Zhao, S., Lin, S., Feng, Y., Zhou, L., Qin, Y.: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano. 6(12), 11009–11017 (2012)

    Article  Google Scholar 

  135. Sun, G., Yao, K., Liao, H., Niu, Z., Liu, Z.: Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix. Int. J. Electron. 87(6), 735–740 (2000)

    Article  Google Scholar 

  136. Bahar, E.: Cross polarization of lateral waves propagating along a free-space–chiral planar interface: applications to identification of optically active materials. JOSA B. 28(5), 1194–1199 (2011)

    Article  ADS  Google Scholar 

  137. Reina, G., Milella, A., Underwood, J.: Self-learning classification of radar features for scene understanding. Robot. Auton. Syst. 60(11), 1377–1388 (2012)

    Article  Google Scholar 

  138. Kim, Y.-J., Kim, S.-S.: Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5~ 40 GHz). J. Electroceram. 24(4), 314–318 (2010)

    Article  Google Scholar 

  139. Xu, F., Ma, L., Gan, M., Tang, J., Li, Z., Zheng, J., Zhang, J., Xie, S., Yin, H., Shen, X.: Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties. J. Alloys Compd. 593, 24–29 (2014)

    Article  Google Scholar 

  140. Ting, T.-H., Wu, K.-H.: Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J. Magn. Magn. Mater. 322(15), 2160–2166 (2010)

    Article  ADS  Google Scholar 

  141. Choudhary, H.K., Pawar, S.P., Kumar, R., Anupama, A., Bose, S., Sahoo, B.: Mechanistic insight into the critical concentration of barium hexaferrite and the conductive polymeric phase with respect to synergistically electromagnetic interference (EMI) shielding. ChemistrySelect. 2(2), 830–841 (2017)

    Article  Google Scholar 

  142. Yang, C., Gung, Y., Hung, W., Ting, T., Wu, K.: Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites. Compos. Sci. Technol. 70(3), 466–471 (2010)

    Article  Google Scholar 

  143. Liu, J.R., Itoh, M., Machida, K.-i.: Magnetic and electromagnetic wave absorption properties of α-Fe∕ Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett. 88(6), 062503 (2006)

    Article  ADS  Google Scholar 

  144. Tyagi, S., Baskey, H.B., Agarwala, R.C., Agarwala, V., Shami, T.C.: Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram. Int. 37(7), 2631–2641 (2011)

    Article  Google Scholar 

  145. Yang, H., Ye, T., Lin, Y., Liu, M.: Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline. Synth. Met. 210, 245–250 (2015)

    Article  Google Scholar 

  146. Iqbal, S., Shah, J., Kotnala, R., Ahmad, S.: Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J. Alloys Compd. 779, 487–496 (2019)

    Article  Google Scholar 

  147. Shen, B., Zhai, W., Tao, M., Ling, J., Zheng, W.: Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces. 5(21), 11383–11391 (2013)

    Article  Google Scholar 

  148. Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.K.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014)

    Article  Google Scholar 

  149. Sambyal, P., Dhawan, S., Gairola, P., Chauhan, S.S., Gairola, S.: Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18(5), 611–618 (2018)

    Article  ADS  Google Scholar 

  150. Wang, Y., Huang, Y., Wang, Q., He, Q., Chen, L.: Preparation and electromagnetic properties of Polyaniline (polypyrrole)-BaFe12O19/Ni0. 8Zn0. 2Fe2O4 ferrite nanocomposites. Appl. Surf. Sci. 259, 486–493 (2012)

    Article  ADS  Google Scholar 

  151. Chung, D.: Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon. 50(9), 3342–3353 (2012)

    Article  Google Scholar 

  152. Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., Eklund, P.C.: Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006)

    Article  ADS  Google Scholar 

  153. Maiti, S., Shrivastava, N.K., Suin, S., Khatua, B.: Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl. Mater. Interfaces. 5(11), 4712–4724 (2013)

    Article  Google Scholar 

  154. Li, X., Yi, H., Zhang, J., Feng, J., Li, F., Xue, D., Zhang, H., Peng, Y., Mellors, N.J.: Fe 3 O 4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. J. Nanopart. Res. 15(3), 1472 (2013)

    Article  ADS  Google Scholar 

  155. Liu, J., Che, R., Chen, H., Zhang, F., Xia, F., Wu, Q., Wang, M.: Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small. 8(8), 1214–1221 (2012)

    Article  Google Scholar 

  156. Zhang, X.-J., Wang, G.-S., Cao, W.-Q., Wei, Y.-Z., Liang, J.-F., Guo, L., Cao, M.-S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces. 6(10), 7471–7478 (2014)

    Article  Google Scholar 

  157. Vinayasree, S., Soloman, M., Sunny, V., Mohanan, P., Kurian, P., Joy, P., Anantharaman, M.: Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications. J. Appl. Phys. 116(2), 024902 (2014)

    Article  ADS  Google Scholar 

  158. Zhao, T., Ji, X., Jin, W., Guo, S., Zhao, H., Yang, W., Wang, X., Xiong, C., Dang, A., Li, H.: Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite. J. Alloys Compd. 703, 424–430 (2017)

    Article  Google Scholar 

  159. Zhao, T., Hou, C., Zhang, H., Zhu, R., She, S., Wang, J., Li, T., Liu, Z., Wei, B.: Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014)

    Article  ADS  Google Scholar 

  160. Kumar, S., Datt, G., Santhosh Kumar, A., Abhyankar, A.: Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films. J. Appl. Phys. 120(16), 164901 (2016)

    Article  ADS  Google Scholar 

  161. Aal, N.A., Al-Hazmi, F., Al-Ghamdi, A.A., Al-Ghamdi, A.A., El-Tantawy, F., Yakuphanoglu, F.: A novel facile synthesis and electromagnetic wave shielding effectiveness at microwave frequency of graphene oxide paper. Microsyst. Technol. 21(10), 2155–2163 (2015)

    Article  Google Scholar 

  162. Yakuphanoglu, F., Al-Ghamdi, A.A., El-Tantawy, F.: Electromagnetic interference shielding properties of nanocomposites for commercial electronic devices. Microsyst. Technol. 21(11), 2397–2405 (2015)

    Article  Google Scholar 

  163. Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q., Sun, X.: One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52–55 (2014)

    Article  Google Scholar 

  164. Cao, M.-S., Wang, X.-X., Cao, W.-Q., Yuan, J.: Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C. 3(26), 6589–6599 (2015)

    Article  Google Scholar 

  165. Verma, M., Singh, A.P., Sambyal, P., Singh, B.P., Dhawan, S., Choudhary, V.: Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys. Chem. Chem. Phys. 17(3), 1610–1618 (2015)

    Article  Google Scholar 

  166. Durmus, Z., Durmus, A., Kavas, H.: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201–1213 (2015)

    Article  ADS  Google Scholar 

  167. He, H., Luo, F., Qian, N., Wang, N.: Improved microwave absorption and electromagnetic properties of BaFe12O19-poly (vinylidene fluoride) composites by incorporating reduced graphene oxides. J. Appl. Phys. 117(8), 085502 (2015)

    Article  ADS  Google Scholar 

  168. Yang, Y., Wang, J.: Synthesis and characterization of a microwave absorbing material based on magnetoplumbite ferrite and graphite nanosheet. Mater. Lett. 124, 151–154 (2014)

    Article  Google Scholar 

  169. Zubair, K., Shakir, M.F., Afzal, A., Rehan, Z.A., Nawab, Y.: Effect of Barium Hexaferrites and Thermally Reduced Graphene Oxide on EMI Shielding Properties in Polymer Composites. J Supercond Nov Magn (2020). https://doi.org/10.1007/s10948-020-05669-x.

  170. Li, Y., Chen, G., Li, Q., Qiu, G., Liu, X.: Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloys Compd. 509(10), 4104–4107 (2011)

    Article  Google Scholar 

  171. Wang, Y., Huang, Y., Wang, Q., He, Q., Zong, M.: Preparation of graphene/BaFe 12 O 19–Ni 0.8 Zn 0.2 Fe 2 O 4 nanocomposite and its microwave absorbing properties. J. Sol-Gel Sci. Technol. 67(2), 344–350 (2013)

    Article  Google Scholar 

  172. Yang, H., Ye, T., Lin, Y., Liu, M.: Preparation and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite. Appl. Surf. Sci. 357, 1289–1293 (2015)

    Article  ADS  Google Scholar 

  173. Bhattacharya, P., Sahoo, S., Das, C.: Microwave absorption behaviour of MWCNT based nanocomposites in X-band region. Express Polym Lett. 7, 212–223 (2013).

  174. Briceno, S., Silva, P., Molina, W., Brämer-Escamilla, W., Alcala, O., Canizales, E.: Magnetic properties of NiFe2O4/carbon nanofibers from Venezuelan petcoke. J. Magn. Magn. Mater. 381, 10–13 (2015)

    Article  ADS  Google Scholar 

  175. Afghahi, S.S.S., Peymanfar, R., Javanshir, S., Atassi, Y., Jafarian, M.: Synthesis, characterization and microwave characteristics of ternary nanocomposite of MWCNTs/doped Sr-hexaferrite/PANI. J. Magn. Magn. Mater. 423, 152–157 (2017)

    Article  ADS  Google Scholar 

  176. Estevez, D., Qin, F., Quan, L., Luo, Y., Zheng, X., Wang, H., Peng, H.: Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable microwave absorption. Carbon. 132, 486–494 (2018)

    Article  Google Scholar 

  177. Quan, L., Qin, F., Estevez, D., Wang, H., Peng, H.: Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon. 125, 630–639 (2017)

    Article  Google Scholar 

  178. Li, D., Zhou, X., Luo, K., Yuan, B., Liu, Y., Sun, L., Liu, Z.: Investigation on the microwave absorbing property of Fe3O4/CNFs synthesized by chemical co-precipitation. Int. J. Electrochem. Sci. 10(10), 8097–8102 (2015)

    Google Scholar 

  179. Afghahi, S.S.S., Jafarian, M., Atassi, Y.: A promising lightweight multicomponent microwave absorber based on doped barium hexaferrite/calcium titanate/multiwalled carbon nanotubes. J. Nanopart. Res. 18(7), 192 (2016)

    Article  ADS  Google Scholar 

  180. Zhang, H., Hong, M., Chen, P., Xie, A., Shen, Y.: 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J. Alloys Compd. 665, 381–387 (2016)

    Article  Google Scholar 

  181. Zhang, Y., Huang, Y., Chen, H., Huang, Z., Yang, Y., Xiao, P., Zhou, Y., Chen, Y.: Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon. 105, 438–447 (2016)

    Article  Google Scholar 

  182. Gu, J., Li, Y., Liang, C., Tang, Y., Tang, L., Zhang, Y., Kong, J., Liu, H., Guo, Z.: Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. J. Mater. Chem. C. 6(28), 7652–7660 (2018)

    Article  Google Scholar 

  183. Qiu, H., Luo, X., Wang, J., Zhong, X., Qi, S.: Synthesis and characterization of ternary polyaniline/barium ferrite/reduced graphene oxide composite as microwave-absorbing material. J. Electron. Mater. 48(7), 4400–4408 (2019)

    Article  ADS  Google Scholar 

  184. Zhao, T., Jin, W., Ji, X., Yan, H., Jiang, Y., Dong, Y., Yang, Y., Dang, A., Li, H., Li, T.: Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties. J. Alloys Compd. 712, 59–68 (2017)

    Article  Google Scholar 

  185. Zhao, T., Ji, X., Jin, W., Xiong, C., Ma, W., Wang, C., Duan, S., Dang, A., Li, H., Li, T.: Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D graphene aerogel/BaFe12O19 nanocomposite. J. Alloys Compd. 708, 115–122 (2017)

    Article  Google Scholar 

  186. Ren, Y., Yan, H., Li, X., Lv, S., Zhu, H., Sun, G., Peng, S.: Enhanced saturation magnetization and microwave absorption magnetic properties of Mn-Co-Zr substituted BaM ferrite. J. Alloys Compd. 693, 1257–1260 (2017)

    Article  Google Scholar 

  187. Jia, X., Wang, J., Zhu, X., Wang, T., Yang, F., Dong, W., Wang, G., Yang, H., Wei, F.: Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 697, 138–146 (2017)

    Article  Google Scholar 

  188. Wang, Y., Wu, X., Zhang, W., Luo, C., Li, J., Wang, Y.: Fabrication of flower-like Ni0. 5Co0. 5 (OH) 2@ PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)

    Article  Google Scholar 

  189. Jiao, S., Wu, M., Yu, X., Hu, H., Bai, Z., Dai, P., Jiang, T., Bi, H., Li, G.: RGO/BaFe12O19/Fe3O4 nanocomposite as microwave absorbent with lamellar structures and improved polarization interfaces. Mater. Res. Bull. 108, 89–95 (2018)

    Article  Google Scholar 

  190. Afzali, A., Mottaghitalab, V., Afghahi, S.S.S., Jafarian, M., Atassi, Y.: Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency. J. Magn. Magn. Mater. 442, 224–230 (2017)

    Article  ADS  Google Scholar 

  191. Meng, X., Zhu, Y., Xu, S., Liu, T.: Facile synthesis of shell–core polyaniline/SrFe 12 O 19 composites and magnetic properties. RSC Adv. 6(6), 4946–4949 (2016)

    Article  ADS  Google Scholar 

  192. Akman, O., Durmus, Z., Kavas, H., Aktas, B., Kurtan, U., Baykal, A., Sözeri, H.: Effect of conducting polymer layer on microwave absorption properties of BaFe12O19— TiO2 composite. Phys. Status Solidi A. 210(2), 395–402 (2013)

    Article  ADS  Google Scholar 

  193. Akman, O., Kavas, H., Baykal, A., Durmus, Z., Aktaş, B., Sözeri, H.: Microwave Absorption Properties of BaFe 12 O 19-TiO 2 Composite Coated with Conducting Polymer. J. Supercond. Nov. Magn. 26(4), 1369–1373 (2013)

    Article  Google Scholar 

  194. Yang, C., Gung, Y., Shih, C., Hung, W., Wu, K.: Synthesis, infrared and microwave absorbing properties of (BaFe12O19+ BaTiO3)/polyaniline composite. J. Magn. Magn. Mater. 323(7), 933–938 (2011)

    Article  ADS  Google Scholar 

  195. Bhattacharya, P., Das, C.K.: In situ synthesis and characterization of CuFe10Al2O19/MWCNT nanocomposites for supercapacitor and microwave-absorbing applications. Ind. Eng. Chem. Res. 52(28), 9594–9606 (2013)

    Article  Google Scholar 

  196. Xu, P., Han, X., Wang, C., Zhou, D., Lv, Z., Wen, A., Wang, X., Zhang, B.: Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B. 112(34), 10443–10448 (2008)

    Article  Google Scholar 

  197. Yang, H., Ye, T., Lin, Y., Liu, M.: Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19–CoFe2O4 powders. J. Alloys Compd. 653, 135–139 (2015)

    Article  Google Scholar 

  198. Xu, P., Han, X., Jiang, J., Wang, X., Li, X., Wen, A.: Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites. J. Phys. Chem. C. 111(34), 12603–12608 (2007)

    Article  Google Scholar 

  199. Peymanfar, R., Ahmadi, M., Javanshir, S.: Tailoring GO/BaFe12O19/La0. 5Sr0. 5MnO3 ternary nanocomposite and investigation of its microwave characteristics. Mater. Res. Express. 6(8), 085063 (2019)

    Article  ADS  Google Scholar 

  200. Zahari, M.H., Guan, B.H., Cheng, E.M., Che Mansor, M.F., Rahim, H.A.: Electromagnetic interference (EMI) shielding performance of the ternary composite based on BaFe 12 O 19, MWCNT and PANI at the Ku-Band. Prog. Electromagn. Res. 52, 111–118 (2016)

    Article  Google Scholar 

  201. Gairola, P., Gairola, S., Kumar, V., Singh, K., Dhawan, S.: Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference. Synth. Met. 221, 326–331 (2016)

    Article  Google Scholar 

  202. Deng, L., Zhou, P., Xie, J., Zhang, L.: Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101(10), 103916 (2007)

    Article  ADS  Google Scholar 

  203. He, L., Chang, P., Yang, H., Xie, H., Zhang, C.: Giant enhancement of microwave absorption property in spherical and flake-like BaFe12O19/Polyvinyl Butyral ternary composite. Mater. Lett. 195, 45–47 (2017)

    Article  Google Scholar 

  204. Sun, X., Sheng, L., Yang, J., An, K., Yu, L., Zhao, X.: Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption. J. Mater. Sci. Mater. Electron. 28(17), 12900–12908 (2017)

    Article  Google Scholar 

  205. Wang, Y., Huang, Y., Ding, J.: Synthesis and electromagnetic absorption properties of polypyrrole/BaFe12O19–Ni0. 8Zn0. 2Fe2O4/multi-walled carbon nanotube composites. Mater. Sci. Semicond. Process. 26, 632–641 (2014)

    Article  Google Scholar 

  206. Ren, X., Fan, H., Cheng, Y.: Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites. Appl. Phys. A. 122(5), 506 (2016)

    Article  ADS  Google Scholar 

  207. Li, Q., Pang, J., Wang, B., Tao, D., Xu, X., Sun, L., Zhai, J.: Preparation, characterization and microwave absorption properties of barium-ferrite-coated fly-ash cenospheres. Adv. Powder Technol. 24(1), 288–294 (2013)

    Article  Google Scholar 

  208. Xin-Chun, Y., Rui-Jiang, L., Xiang-Qian, S., Fu-Zhan, S., Mao-Xiang, J., Xian-Feng, M.: Enhancement of microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers. Chin. Phys. B. 22(5), 058101 (2013)

  209. Chen, W., Zheng, J., Li, Y.: Synthesis and electromagnetic characteristics of BaFe12O19/ZnO composite material. J. Alloys Compd. 513, 420–424 (2012)

    Article  Google Scholar 

  210. Mohammed, J., Carol, T.T.T., Hafeez, H., Basandrai, D., Bhadu, G.R., Godara, S.K., Narang, S., Srivastava, A.: Electromagnetic interference (EMI) shielding, microwave absorption, and optical sensing properties of BaM/CCTO composites in Ku-band. Results in Physics. 13, 102307 (2019)

    Article  Google Scholar 

  211. Sutradhar, S., Saha, S., Javed, S.: Shielding Effectiveness Study of Barium Hexaferrite-Incorporated, β-Phase-Improved Poly (vinylidene fluoride) Composite Film: A Metamaterial Useful for the Reduction of Electromagnetic Pollution. ACS Appl. Mater. Interfaces. 11(26), 23701–23713 (2019)

    Article  Google Scholar 

  212. Ozah, S., Bhattacharyya, N.: Nanosized barium hexaferrite in novolac phenolic resin as microwave absorber for X-band application. J. Magn. Magn. Mater. 342, 92–99 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Fayzan Shakir or Z. A. Rehan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• M-type barium hexaferrite having a hexagonal magneto-plumbite structure with high saturation magnetization as well as magnetic anisotropy, chemically stable and as magnetic material and microwave absorber finds the scope for its application.

• The barium hexaferrite-based nanocomposites show high EMI SE with a dominant mechanism of absorption and reflection loss (RL) in a wide range of frequency and effective bandwidth of absorption.

• It is fundamental to have a balance between the concentration of the fillers to achieve impedance match and high absorption.

• Due to the light in weight, cheap, and broad absorption bandwidth of civil electromagnetic waves, the reported nanocomposites could be utilized to protect from the EM pollution in our daily life.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M., Siddique, S., Anum, R. et al. M-Type Barium Hexaferrite-Based Nanocomposites for EMI Shielding Application: a Review. J Supercond Nov Magn 34, 1019–1045 (2021). https://doi.org/10.1007/s10948-021-05859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05859-1

Keywords

Navigation