Skip to main content

Advertisement

Log in

Inductance Calculation of HTS Transformers with Multi-segment Windings Considering Insulation Constraints

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High-temperature superconducting (HTS) transformers with multi-segment windings have been proposed in earlier literatures for the hysteresis loss reduction and short circuit electromagnetic force mitigation. The optimum distributive ratios for these multi-segment windings have been determined in earlier literatures. Asymmetrical seven segment winding with its optimum distributive ratio (k = 1/12) results in minimization of short circuit electromagnetic forces under normal tap and any adjusted tap. However, insulation design and leakage inductance calculation for the multi-segment winding of an HTS transformer have not been addressed in past literatures. Insulation design is one of the most crucial aspects in the transformer design, especially for high voltage power transformers. The analysis and optimization of the electric field distribution over the winding’s segments insulation in these HTS transformers provide the required dimensions for precise determination of the leakage inductances. In this paper, for the first time, winding insulation design and leakage inductance calculation of a 200 MVA, 230/20 kV HTS transformer with asymmetrical seven segment winding (and k of 1/12), are carried out. The analytical method besides a two-dimensional (2D) finite element method (FEM), through COMSOL Multiphysics software, is utilized for insulation design and calculation of leakage inductances of this transformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. S. Kalsi, “Application of high temperature superconductors to electric power equipment,” IEEE Press, John Wiley & Sons, Inc., 2011.

  2. Song, W., Jiang, Z., Staines, M., Wimbush, S., Badcock, R., Fang, J.: AC loss calculation on a 6.5 MVA/25 kV HTS traction transformer with hybrid winding structure. IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020) Art no. 5500405

    Google Scholar 

  3. Yazdani-Asrami, M., Gholamian, S.A., Mirimani, S.M., Adabi, J.: Influence of field-dependent critical current on harmonic AC loss analysis in HTS coils for superconducting transformers supplying non-linear loads. Cryogenics. 113, 103234 (2021)

    Article  Google Scholar 

  4. Yazdani-Asrami, M., et al.: Fault current limiting HTS transformer with extended fault withstand time. Supercond. Sci. Technol. 32(3), 035006 (2019)

    Article  ADS  Google Scholar 

  5. R. M. Del Vecchio, B. Poulin, P. T. Feghali, D. M. Shah and R. Ahuja, “Transformer design principles with applications to core-form power transformers,” Second Edition, CRC Press, 2010.

  6. P. Elhaminia and M. Vakilian, “Frequency response features of a multi-objective wind turbine transformer design,” 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, pp. 643-648, 2016.

  7. Nie, H., Wei, X., Wang, Y., Chen, Q.: A study of electrical aging of the turn-to-turn oil-paper insulation in transformers with a step-stress method. Energies. 12(11), 1–6 (Nov. 2018)

    Google Scholar 

  8. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: HTS transformer’s partial discharges raised by floating particles and nitrogen bubbles. J. Supercond. Nov. Magn. 33(10), 3027–3034 (2020)

    Article  Google Scholar 

  9. Cheon, H.G., Kwag, D.S., Choi, J.H., Min, C.H., Park, T.S., Kim, H.H., Kim, S.H.: Insulation design and experimental results for transmission class HTS transformer with composite winding. IEEE Trans. Appl. Supercond. 18(2), 648–651 (June 2008)

    Article  ADS  Google Scholar 

  10. Jin, Z., Lapthorn, A., Staines, M.: The dielectric strength of Nomex 410 paper in liquid nitrogen under boiling situations. IEEE Trans. Appl. Supercond. 27(7), 1–10 (2017)

    Article  Google Scholar 

  11. Moradnouri, A., Ardeshiri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: Survey on high-temperature superconducting transformer windings design. J. Supercond. Nov. Magn. 33(9), 2581–2599 (Sep. 2020)

    Article  Google Scholar 

  12. Vysotsky, V.S., et al.: Development and test results of HTS windings for superconducting transformer with 1 MVA rated power. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    Article  MathSciNet  Google Scholar 

  13. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: HTS Transformers leakage flux and short circuit force mitigation through optimal design of auxiliary windings. Cryogenics. 110, 103148 (Sep. 2020)

    Article  Google Scholar 

  14. Hu, D., et al.: Characteristics comparison between HTS air core and partial core transformers. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  15. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: Optimal design of flux diverter using genetic algorithm for axial short circuit force reduction in HTS transformers. IEEE Trans. Appl. Supercond. 30(1), 1–8 (Jan. 2020)

    Article  Google Scholar 

  16. Irannezhad, F., Heydari, H.: Conducting a survey of research on high temperature superconducting transformers. IEEE Trans. Appl. Supercond. 30(6), 1–13 (2020) Art no. 5500613

    Article  Google Scholar 

  17. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: The end part of cryogenic H. V. bushing insulation design in a 230/20 kV HTS transformer. Cryogenics. 108, 103090 (2020)

    Article  Google Scholar 

  18. S. V. Kulkarni and S. A. Khaparde, “Transformer engineering design, technology and diagnostics,” Marcel Dekker Inc., 2004.

  19. Khaligh, A., Vakilian, M.: Power transformers internal insulation design improvements using electric field analysis through finite-element methods. IEEE Trans. Magn. 44(2), 273–278 (Feb. 2008)

    Article  ADS  Google Scholar 

  20. Krause, C.: Power transformer insulation – history, technology and design. IEEE Trans. Dielectr. Electr. Insul. 19(6), 1941–1947 (Dec. 2012)

    Article  Google Scholar 

  21. Yea, M., Han, K.J., Park, J., Lee, S., Choi, J.: Design optimization for the insulation of HVDC converter transformers under composite electric stresses. IEEE Trans. Dielectr. Electr. Insul. 25(1), 253–262 (Feb. 2018)

    Article  Google Scholar 

  22. Baek, S.M., Kim, S.H.: Breakdown and voltage-time characteristics of turn-to-turn models for an HTS transformer. IEEE Trans. Appl. Supercond. 18(1), 36–41 (March 2008)

    Article  ADS  Google Scholar 

  23. Cheon, H.G., Choi, J.H., Kim, K.J., Lee, H.G., Kim, S.H.: The barrier effect on breakdown for design of 154 kV class HTS transformer. IEEE Trans. Appl. Supercond. 21(3), 1434–1437 (June 2011)

    Article  ADS  Google Scholar 

  24. Joung, J., Baek, S., Kim, S.: Manufacturing and test of model double-pancake coils of HTS transformer for cryogenic insulation design. IEEE Trans. Appl. Supercond. 14(2), 928–931 (2004)

    Article  ADS  Google Scholar 

  25. Cheon, H.G., Choi, J.H., Choi, J.W., Pang, M.S., Kim, S.H.: Insulation design of HTS transformer with the use of continuous transposed conductor. Phys. C. 470(20), 1679–1683 (2010)

    Article  ADS  Google Scholar 

  26. Jin, Z., Lapthorn, A., Staines, M.: An investigation on the AC dielectric strength of paper sheet insulation in liquid nitrogen. IEEE Trans. Appl. Supercond. 29(1), 1–7 (2019)

    Article  Google Scholar 

  27. Murase, H., Okabe, S., Kumai, T., Takakura, H., Takahashi, M., Okubo, H.: Systematization of insulation design technology for various electric power apparatus. IEEE Trans. Dielectr. Electr. Insul. 13(2), 400–407 (2006)

    Article  Google Scholar 

  28. Ghabeli, A., Yazdani-Asrami, M., Besmi, M.R., Gholamian, S.A.: Optimization of distributive ratios of apportioned winding configuration in HTS power transformers for hysteresis loss and leakage flux reduction. J. Supercond. Nov. Magn. 28(12), 3463–3479 (2015)

    Article  Google Scholar 

  29. Ghabeli, A., Yazdani-Asrami, M., Gholamian, S.A.: A novel unsymmetrical multi-segment concentric winding scheme for electromagnetic force and leakage flux mitigation in HTS power transformers. IEEE Trans. Appl. Supercond. 25(6), 1–10 (2015)

    Article  Google Scholar 

  30. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: HTS Transformer windings design using distributive ratios for minimization of short circuit forces. J. Supercond. Nov. Magn. 32(2), 151–158 (2019)

    Article  Google Scholar 

  31. Ghabeli, A., Besmi, M.R.: Capability of new multi-segment winding configurations in hts transformer to mitigate electromagnetic forces under short-circuit condition. Cryogenics. 84, 20–28 (2017)

    Article  ADS  Google Scholar 

  32. Daneshmand, S.V., Heydari, H.: Multiphysics approach in HTS transformers with different winding schemes. IEEE Trans. Appl. Supercond. 24(2), 103–110 (April 2014)

    Article  ADS  Google Scholar 

  33. Moradnouri, A., Vakilian, M., Hekmati, A., Fardmanesh, M.: Multi-Segment winding application for axial short circuit force reduction under tap changer operation in HTS transformers. J. Supercond. Nov. Magn. 32(10), 3171–3182 (2019)

    Article  Google Scholar 

  34. Choi, J.H., Choi, J.W., Baek, S.M., Kim, S.H.: The insulation design of 154 kV HTS transformer and on load tap changers. IEEE Trans. Appl. Supercond. 19(3), 1972–1975 (2009)

    Article  ADS  Google Scholar 

  35. Kang, H., Lee, C., Yang, S.E., Ko, T.K., Seok, B.: Dielectric tests of superconducting coils for development of high voltage superconducting machines. IEEE Trans. Appl. Supercond. 17(2), 1493–1496 (2007)

    Article  ADS  Google Scholar 

  36. Wang, H., Zhang, J., Niu, X., Tian, B., Hong, H., Xin, Y.: Electrical insulation of HTS coils in saturated iron core superconducting fault current limiter. IEEE Trans. Appl. Supercond. 24(3), 1–4 (2014)

    Google Scholar 

  37. Song, M., Cao, K.N., Wang, D.D., Yang, X., Wei, B.: AC and impulse dielectric strength of polymer materials under tensile stress at 77 K. IEEE Trans. Appl. Supercond. 24(5), 1–4 (2014)

    Article  Google Scholar 

  38. Lee, H., Lee, O., Kim, J., Kang, H.: Study on the E-t characteristics of GFRP for a high-voltage superconducting apparatus. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)

    Article  Google Scholar 

  39. Gerhold, J.: Properties of cryogenic insulants. Cryogenics. 38(11), 1063–1081 (Nov. 1998)

    Article  ADS  Google Scholar 

  40. Hill, N., Kurrat, M.: Discharge mechanisms in liquid nitrogen—breakdown field strength of gaseous nitrogen. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2018)

    Article  Google Scholar 

  41. IEC 60071-1, Insulation co-ordination- Part 1: definitions, principles and rules, Eighth Edition, 2006.

  42. IEC 60071-4, Insulation co-ordination- Part 4: computational guide to insulation co-ordination and modelling of electrical networks, 2004.

  43. A. Greenwood, “Electrical Transients in Power Systems,” Second Edition, John Wiley & Sons, Inc. 1991.

  44. IEC 60076-3, Power Transformers- Part 3: Insulation Levels, Dielectric Tests and External Clearances in Air, Third Edition, 2013.

  45. James, D.R., Sauers, I., Ellis, A.R., Schwenterly, S.W., Tuncer, E., Pleva, E.: AC and impulse breakdown of liquid nitrogen at 77 K for quasi-uniform field gaps. AIP Conf. Proc. 986(1), (2008)

  46. Kazemi, R., Jazebi, S., Deswal, D., de Leόn, F.: Estimation of design parameters of single-phase distribution transformers from terminal measurements. IEEE Trans. Power Del. 32(4), 2031–2039 (2017)

    Article  Google Scholar 

  47. Hernandez, I.A., Cañedo, J.M., Olivares-Galvan, J.C., Betancourt, E.: Novel technique to compute the leakage reactance of three-phase power transformers. IEEE Trans. Power Del. 31(2), 437–444 (2016)

    Article  Google Scholar 

  48. de Leon, F., Martinez, J.A.: Dual three-winding transformer equivalent circuit matching leakage measurements. IEEE Trans. Power Del. 24(1), 160–168 (2009)

    Article  Google Scholar 

  49. IEC 60076-5, Power transformers- Part 5: ability to withstand short circuit, Third Edition, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Moradnouri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradnouri, A., Vakilian, M., Hekmati, A. et al. Inductance Calculation of HTS Transformers with Multi-segment Windings Considering Insulation Constraints. J Supercond Nov Magn 34, 1329–1339 (2021). https://doi.org/10.1007/s10948-021-05850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05850-w

Keywords

Navigation