Skip to main content

Effects of Cobalt Nanoisland Geometry on Terahertz Negative Refraction: a Numerical Analysis

Abstract

The architectural framework plays a major role in determining the optical properties of left-handed materials. Most metamaterial so far designed have been based on complicated resonant elements such as split rings and hyperbolic metamaterials. Unfortunately, magnetic response of most of the materials tails off at higher frequencies. Higher frequency excitation in metamaterials requires more complicated designs or toroidal moment. In the proposed magnonic metamaterials, the toroidal excitations are naturally maintained and make it suitable for THz resonances. Magnetism and left-handed behavior are the two extreme phenomena that do not seem to be compatible and the coexistence of both cooperative effects was not foreseen. Terahertz spintronics is an emerging field that bridges the boundary between magnetism and photonics, which make the magnetic material suitable for photonic applications. Here, we present the first numerical realization of a magnonic metamaterial artificial spin ice (ASI), designed to operate at terahertz frequency. The two-dimensional square arrays exhibit a rich spin wave band structure that is tunable both by external electromagnetic fields and the magnetization configuration of individual elements. The ultrafast spin wave resonances have provided a direct gateway to manipulate magnetic field of free-space terahertz pulses. The proposed system consists of two-dimensional square arrays of cobalt nanoislands in four different geometries and the micromagnetic simulations of these systems are carried out using mumax3. From the numerical results, the theoretical prediction of negative permeability is done using Schloemann model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Anantha Ramakrishna, S.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 2 (2005). https://doi.org/10.1088/0034-4885/68/2/R06

    Article  Google Scholar 

  2. 2.

    Ravelo, B., Wan, F., Lalléchère, S., Rahajandraibe, W., Thakur, P., Thakur, A.: Innovative theory of low-pass NGD via-hole-ground circuit. IEEE Access. 8(1), 130172–130182 (2000). https://doi.org/10.1109/ACCESS.2020.3009286

    Article  Google Scholar 

  3. 3.

    Oh, S.S., Shafai, L.: Compensated circuit with characteristics of lossless double negative materials and its application to array antennas. IET Microwaves Antennas Propag. 1(1), 29–38 (2007). https://doi.org/10.1049/ietmap:20050229

    Article  Google Scholar 

  4. 4.

    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Uspekhi. 10(9), 509–514 (1968). https://doi.org/10.1070/pu1968v010n04abeh003699

    ADS  Article  Google Scholar 

  5. 5.

    Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996). https://doi.org/10.1103/PhysRevLett.76.4773

    ADS  Article  Google Scholar 

  6. 6.

    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter. 22, 007 (1998). https://doi.org/10.1088/09538984/10/22/007

    Article  Google Scholar 

  7. 7.

    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech. 798, 002 (1999). https://doi.org/10.1109/22.798002

    Article  Google Scholar 

  8. 8.

    Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966

    ADS  Article  Google Scholar 

  9. 9.

    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    ADS  Article  Google Scholar 

  10. 10.

    Smith, D.R., Kroll, N.: Negative refractive index in left-handed materials. Phys. Rev. Lett. 85, 2933 (2000). https://doi.org/10.1103/PhysRevLett.85.2933

    ADS  Article  Google Scholar 

  11. 11.

    Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78, 489 (2001). https://doi.org/10.1063/1.1343489

    ADS  Article  Google Scholar 

  12. 12.

    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science. 292, 5514 (2001). https://doi.org/10.1126/science.1058847

    Article  Google Scholar 

  13. 13.

    Parazzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C., Tanielian, M.: Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett. 90(10), 7401 (2003). https://doi.org/10.1103/PhysRevLett.90.107401

    Article  Google Scholar 

  14. 14.

    Poddubny, A., Iorsh, I., Belov, P., Kivshar, Y.: Hyperbolic metamaterials. Nat. Photonics. 7, 948–957 (2013). https://doi.org/10.1038/nphoton.2013.243

    ADS  Article  Google Scholar 

  15. 15.

    Safa, K., Capper, P.: Springer Handbook of Electronic and Photonic Materials, 2nd edn. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-48933-9

  16. 16.

    Siddiqui, O.F., Mojahedi, M., Eleftheriades, G.V.: Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Trans. Antennas Propag. 51(10), 2619–2625 (2003). https://doi.org/10.1109/TAP.2003.817556

    ADS  Article  Google Scholar 

  17. 17.

    Mikhaylovskiy, R.V., Hendry, E., Kruglyak, V.V.: Negative permeability due to exchange spin-wave resonances in thin magnetic films with surface pinning. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 195446 (2010). https://doi.org/10.1103/PhysRevB.82.195446

    ADS  Article  Google Scholar 

  18. 18.

    Walowski, J., Münzenberg, M.: Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016). https://doi.org/10.1063/1.4958846

    ADS  Article  Google Scholar 

  19. 19.

    Kampfrath, T., et al.: Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013). https://doi.org/10.1038/nnano.2013.43

    ADS  Article  Google Scholar 

  20. 20.

    Seifert, T., et al.: Efficient metallic spintronic emitters of ultra broadband terahertz radiation. Nat. Photonics. 10, 483–488 (2016). https://doi.org/10.1038/nphoton.2016.91

    ADS  Article  Google Scholar 

  21. 21.

    Wu, Y., et al.: High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 29, 1603031 (2017). https://doi.org/10.1002/adma.201603031

    Article  Google Scholar 

  22. 22.

    Yang, D., et al.: Powerful and tunable THz emitters based on the fe/pt magnetic heterostructure. Adv. Opt. Mater. 4, 1944–1949 (2016). https://doi.org/10.1002/adom.201600270

    Article  Google Scholar 

  23. 23.

    Papaioannou, E.T., et al.: Efficient terahertz generation using fe/pt spintronic emitters pumped at different wavelengths. IEEE Trans. Magn. 54, 1–5 (2018). https://doi.org/10.1109/TMAG.2018.2847031

    Article  Google Scholar 

  24. 24.

    Rajaram, M., Rajamani, A., Muthuraj, P., Arumugam, B., Natarajan, K.: Investigation of left handed behavior in ferromagnetic cobalt magnetic vortex structure using spin wave resonances. IEEE Trans. Magn. 56, 8 (2020). https://doi.org/10.1109/TMAG.2020.2979791

    Article  Google Scholar 

  25. 25.

    Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., Ono, T.: Magnetic vortex core observation in circular dots of permalloy. Science. 289, 930–932 (2000). https://doi.org/10.1126/science.289.5481.930

    ADS  Article  Google Scholar 

  26. 26.

    Wachowiak, J., Wiebe, M., Bode, O., Pietzsch, M., Morgenstern, R.: Wiesendanger, “Direct observation of internal spin structure of magnetic vortex cores”. Science. 298, 577–580 (2002). https://doi.org/10.1126/science.1075302

    ADS  Article  Google Scholar 

  27. 27.

    Kammerer, M., Weigand, M., Curcic, M., et al.: Magnetic vortex core reversal by excitation of spin waves. Nat. Commun. 2, 279 (2011). https://doi.org/10.1038/ncomms1277

    ADS  Article  Google Scholar 

  28. 28.

    Kasai, S.K., Nakatani, Y., et al.: Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 270–273 (2007). https://doi.org/10.1038/nmat1867

    ADS  Article  Google Scholar 

  29. 29.

    Spaldin, N.A., Fiebig, M., Mostovoy, M.: The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter. 20, 43 (2008). https://doi.org/10.1088/0953-8984/20/43/434203

    Article  Google Scholar 

  30. 30.

    Zimmermann, A.S., Meier, D., Fiebig, M.: Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014). https://doi.org/10.1038/ncomms5796

    ADS  Article  Google Scholar 

  31. 31.

    Stenishchev, I.V., Basharin, A.A.: Toroidal response in all-dielectric metamaterials based on water. Sci. Rep. 7, 9468 (2017). https://doi.org/10.1038/s41598-017-07399-y

    ADS  Article  Google Scholar 

  32. 32.

    Papasimakis, N., Fedotov, V.A., Savinov, V., Raybould, T.A., Zheludev, N.I.: Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15, 263–271 (2016). https://doi.org/10.1038/nmat4563

    ADS  Article  Google Scholar 

  33. 33.

    Vansteenkiste, A., et al.: The design and verification of mumax3. AIP Adv. 4, 107133 (2014). https://doi.org/10.1063/1.4899186

    ADS  Article  Google Scholar 

  34. 34.

    Olive, E., et al.: Derivation from the Landau-Lifshitz-Gilbert equation in the inertial regime of the magnetization. J. Appl. Sci. 117, 213904 (2015). https://doi.org/10.1063/1.4921908

    ADS  Article  Google Scholar 

  35. 35.

    Toussaint, J.-C., Marty, A., Vukadinovic, N., Ben Youssef, J., Labrune, M.: A new technique for ferromagnetic resonance calculations. Comput. Mater. Sci. 24, 175–180 (2002). https://doi.org/10.1016/S0927-0256(02)00183-0

    Article  Google Scholar 

  36. 36.

    Miron, I.M., et al.: Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 476, 189–193 (2011). https://doi.org/10.1038/nature10309

    ADS  Article  Google Scholar 

  37. 37.

    Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin hall effect of tantalum. Science. 336, 555–558 (2012). https://doi.org/10.1126/science.1218197

    ADS  Article  Google Scholar 

  38. 38.

    Bode, M., Heide, M., von Bergmann, K., et al.: Chiral magnetic order at surfaces driven by inversion asymmetry. Nature. 447, 190–193 (2007). https://doi.org/10.1038/nature05802

    ADS  Article  Google Scholar 

  39. 39.

    Chen, G., Ma, T., N’Diaye, A., et al.: Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013). https://doi.org/10.1038/ncomms3671

    ADS  Article  Google Scholar 

  40. 40.

    Barman, A., et al.: Ultrafast magnetization dynamics in high perpendicular anisotropy (Co/Pt) n multilayers. J. Appl. Phys. 101, 9D102 (2007). https://doi.org/10.1063/1.2709502

    Article  Google Scholar 

  41. 41.

    Metaxas, P., et al.: Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007). https://doi.org/10.1103/PhysRevLett.99.217208

    ADS  Article  Google Scholar 

  42. 42.

    Fook, H., Gan, W., Lew, W.: Gateable skyrmion transport via field-induced potential barrier modulation. Sci. Rep. 6, 21099 (2016). https://doi.org/10.1038/srep21099

    ADS  Article  Google Scholar 

  43. 43.

    Kaelberer, T., Fedotov, V.A., Papasimakis, N., Tsai, D.P., Zheludev, N.I.: Toroidal dipolar response in a metamaterial. Science. 330(6010), 1510–1512 (2010). https://doi.org/10.1126/science.1197172

    ADS  Article  Google Scholar 

  44. 44.

    Ceulemans, A., Chibotaru, L.F., Flower, P.: Molecular anapole moments. Phys. Rev. Lett. 80, 1861 (1998). https://doi.org/10.1103/PhysRevLett.80.1861

    ADS  Article  Google Scholar 

  45. 45.

    Afanasiev, G.N., Dubovik, V.M.: Electromagnetic properties of a toroidal solenoid. J. Phys. A: Gen. Phys. 25, 18 (1992). https://doi.org/10.1088/0305-4470/25/18/020

    MathSciNet  Article  Google Scholar 

  46. 46.

    Ishii, T., Yamakawa, H., Kanaki, T., et al.: Ultrafast magnetization modulation induced by the electric field component of a terahertz pulse in a ferromagnetic-semiconductor thin film. Sci. Rep. 8, 6901 (2018). https://doi.org/10.1038/s41598-018-25266-2

    ADS  Article  Google Scholar 

  47. 47.

    Vicario, C., Ruchert, C., Ardana-Lamas, F., et al.: Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. Nat. Photonics. 7, 720–723 (2013). https://doi.org/10.1038/nphoton.2013.209

    ADS  Article  Google Scholar 

  48. 48.

    Bonetti, S., Hoffmann, M.C., Sher, M.-J., Chen, Z., Yang, S.-H., Samant, M.G., Parkin, S.S.P., Dürr, H.A.: THz-driven ultrafast spin-lattice scattering in amorphous metallic ferromagnets. Phys. Rev. Lett. 117, (2016). https://doi.org/10.1103/PhysRevLett.117.087205

  49. 49.

    Shalaby, M., Vicario, C., Hauri, C.P.: Simultaneous electronic and the magnetic excitation of a ferromagnet by intense THz pulses. New J. Phys. 18, (2016). https://doi.org/10.1088/1367-2630/18/1/013019

  50. 50.

    Lambert, C.H., et al.: All-optical control of ferromagnetic thin films and nanostructures. Science. 345(6202), 1337–1340 (2014). https://doi.org/10.1126/science.1253493

    ADS  Article  Google Scholar 

  51. 51.

    Shalaby, M., Vidal, F., Peccianti, M., Morandotti, R., Enderli, F., Feurer, T., Patterson, B.D.: Terahertz macrospin dynamics in insulating ferrimagnets. Phys. Rev. B. 88, 140301(R) (2013). https://doi.org/10.1103/PhysRevB.88.140301

    ADS  Article  Google Scholar 

  52. 52.

    Back, C.H., Allenspach, R., Weber, W., Parkin, S.S.P., Weller, D., Garwin, E.L., Siegmann, H.C.: Minimum field strength in precessional magnetization reversal. Science. 285(5429), 864–886 (1999). https://doi.org/10.1126/science.285.5429.864

    Article  Google Scholar 

  53. 53.

    Tudosa, I., Stamm, C., Kashuba, A., et al.: The ultimate speed of magnetic switching in granular recording media. Nature. 428, 831–833 (2004). https://doi.org/10.1038/nature02438

    ADS  Article  Google Scholar 

  54. 54.

    Vahaplar, K., et al.: All-optical magnetization reversal by circularly polarized laser pulses: experiment and multiscale modeling. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 104402 (2012). https://doi.org/10.1103/PhysRevB.85.104402

    ADS  Article  Google Scholar 

  55. 55.

    Li, J., Shao, J., Li, J.Q., Yu, X.Q., Dong, Z.G., Chen, Q., Zhai, Y.: Optical responses of magnetic-vortex resonance in double-disk metamaterial variations. Phys. Lett. A. 378, 1871 (2014). https://doi.org/10.1016/j.physleta.2014.04.049

    ADS  Article  Google Scholar 

  56. 56.

    Yu, P., Ivanov, Trabada, D.G., Chuvilin, A., Kosel, J., Chubykalo-Fesenko, O., Vázquez, M.: Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires. Nanotechnology. 25, 47 (2014). https://doi.org/10.1088/0957-4484/25/47/475702

    Article  Google Scholar 

  57. 57.

    Guslienko, K.Y., Novosad, V., Otani, Y., Shima, H., Fukamichi, K.: Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 024414 (2002). https://doi.org/10.1103/PhysRevB.65.024414

    ADS  Article  Google Scholar 

  58. 58.

    Guslienko, K.Y., et al.: “Field evolution of magnetic vortex state in ferromagnetic disks” Appl. Phys. Lett. 78, 3848 (2001). https://doi.org/10.1063/1.1377850

    Article  Google Scholar 

  59. 59.

    Behncke, C., Adolff, C.F., Lenzing, N., et al.: Spin-wave interference in magnetic vortex stacks. Nat. Commun. Phys. 1, 50 (2018). https://doi.org/10.1038/s42005-018-0052-1

    Article  Google Scholar 

  60. 60.

    Rusponi, S., Cren, T., Weiss, N., Epple, M., Buluschek, P., Claude, L., Brune, H.: The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures. Nat. Mater. 2, 546 (2013). https://doi.org/10.1038/nmat930

    ADS  Article  Google Scholar 

  61. 61.

    Cen, C., Chen, J., Liang, C., Huang, J., Chen, X., Tang, Y., Yi, Z., Xu, X., Yi, Y., Xiao, S.: Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Phys. E. 103, 93–98 (2018). https://doi.org/10.1016/j.physe.2018.05.033

    Article  Google Scholar 

  62. 62.

    Singh, M.K., Agarwal, A., Gopal, R., Swarnkar, R.K., Kotnala, R.K.: Dumbbell shaped nickel nanocrystals synthesized by a laser-induced fragmentation method. J. Mater. Chem. 21, 11074 (2011). https://doi.org/10.1039/c1jm12320c

    Article  Google Scholar 

  63. 63.

    Shibata, J., Otani, Y.: Magnetic vortex dynamics in a two-dimensional square lattice of ferromagnetic nanodisks. Phys. Rev. B: Condens. Matter Mater. Phys. 70, 1 (2004). https://doi.org/10.1103/PhysRevB.70.012404./

    Article  Google Scholar 

  64. 64.

    Lendinez, S., Jungfleisch, M.B.: Magnetization dynamics in artificial spin ice. J. Phys. Condens. Matter. 32, 013001 (2019). https://doi.org/10.1088/1361-648X/ab3e78

    ADS  Article  Google Scholar 

  65. 65.

    Skjærvø, S.H., Marrows, C.H., Stamps, R.L., et al.: Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020). https://doi.org/10.1038/s422540190118-3

    Article  Google Scholar 

  66. 66.

    Ma, F., Reichhardt, C., Gan, W., Olson Reichhardt, C.J., Lew, W.S.: Emergent geometric frustration of artificial magnetic skyrmion crystals. Phys. Rev. B. 94, (2016). https://doi.org/10.1103/PhysRevB.94.144405

  67. 67.

    de Araujo, C.I.L., Silva, R.C., Ribeiro, R.B.: Magnetic vortex crystal formation in the antidote complement of square artificial spin ice. Appl. Phys. Lett. 104, 9 (2014). https://doi.org/10.1063/1.4867530

    Article  Google Scholar 

  68. 68.

    Baroni, F.: Symmetry breaking phase transitions in mean-field models triggered by double-well potentials. Eur. Phys. J. 93, 45 (2020). https://doi.org/10.1140/epjb/e2020-100374-5

Download references

Funding

RA and MP acknowledge the grant received from DST SERB grant no. EMR/2016/00302, Government of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Madhumathi Rajaram.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajaram, M., Rajamani, A. Effects of Cobalt Nanoisland Geometry on Terahertz Negative Refraction: a Numerical Analysis. J Supercond Nov Magn 34, 1185–1197 (2021). https://doi.org/10.1007/s10948-021-05810-4

Download citation

Keywords

  • Magnetic metamaterial
  • THz spintronics
  • Left-handed behavior
  • Negative refraction