Skip to main content
Log in

Neutron Diffraction Magnetic and Mossbauer Spectroscopic Studies of Pb0.8Bi0.2Fe0.728W0.264O3 and Pb0.7Bi0.3Fe0.762W0.231O3 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report on high-temperature crystallographic structure, magnetic and physical properties of chemically B-site disordered lead-bismuth iron tungstate, (PFW)1−x(BFO)x (which can be written as Pb0.8Bi0.2Fe0.728W0.264O3 (0.8PFW–0.2BFO) for x = 0.2 and Pb0.7Bi0.3Fe0.762W0.231O3 (0.7PFW–0.3BFO) for x = 0.3) or PBFW), solid solutions through neutron diffraction (ND), magnetization, electron paramagnetic resonance, and Mössbauer spectroscopic studies. From the high temperature magnetic susceptibility measurement, it is observed that increase antiferromagnetic to paramagnetic phase transition around TN = 435 K (Pb0.8Bi0.2Fe0.728W0.264O3) and 504 K (Pb0.7Bi0.3Fe0.762W0.231O3), compared to pure PFW. Room-temperature crystallographic study confirms the formation of pseudo cubic structure with Pm-3m space group, whereas the magnetic structure is commensurate G-type antiferromagnetic ordering. The obtained temperature dependent structural parameters from the ND, evidenced to existence of strong spin-lattice coupling around TN for both the compounds. The discontinuity in the Pb/Bi–O bond length around ferroelectric transition (TC) indicates the presence of magnetoelectric coupling. Interestingly, microscopic 1:1 B-site ordered nanoclusters of PBFW exhibits the ferrimagnetic clusters along with antiferromagnetic order and it observed through the opening of M vs H hysteresis curves in the lower field regime. The EPR and Mössbauer spectroscopic studies well support the magnetic property and also reveal the Fe+3 state, and the weak signal in EPR and broader linewidth in the Mössbauer spectra exhibit the B-site disorderliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schmid, H.: Multiferroic magnetoelectrics. Ferroelectrics. 162, 317–338 (1994)

    Article  Google Scholar 

  2. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D. 38, R123–R152 (2005)

    Article  ADS  Google Scholar 

  3. Fiebig, M., Lottermoser, T., Meier, D., Trassin, M.: The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016)

    Article  Google Scholar 

  4. Spaldin, N.A.: Multiferroics: past, present, and future. MRS Bull. 42, 385–390 (2017)

    Article  ADS  Google Scholar 

  5. Spaldin, N.A., Ramesh, R.: Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019)

    Article  Google Scholar 

  6. Tokura, Y., Seki, S., Nagaosa, N.: Multiferroics of spin origin. Rep. Prog. Phys. 77, 76501–76545 (2014)

    Article  Google Scholar 

  7. Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    Article  ADS  Google Scholar 

  8. Nicola, A.: Hill, why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104, 6694–6709 (2000)

    Article  Google Scholar 

  9. S.M. Skinner, Magnetically ordered ferroelectric materials, IEEE Trans. Parts Mater. Packag. 6 [2], 68–90 (1970)

  10. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Ferroelectromagnets, Uspekhi 25, 475 (1982)

  11. Ye, Z.-G., Schmid, H.: Ferroelectrics. 162, 119 (1994)

    Article  Google Scholar 

  12. Nathascia Lampis, Philippe Sciau and Alessandra Geddo Lehmann, Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3, J. Phys.: Condens. Matter 12, 2367–2378 (2000)

  13. Matteppanavar, S., Rayaprol, S., Angadi, B., Sahoo, B.: Composition dependent room temperature structure, electric and magnetic properties in magnetoelectric Pb(Fe1/2Nb1/2)O3- Pb(Fe2/3W1/3)O3 solid-solutions. J. All. Comp. 677, 27–37 (2016)

    Article  Google Scholar 

  14. Brixel, W., Rivera, J.P., Steiner, A., Schmid, H.: Magnetic field induced magnetoelectric effects, (ME)H, in the perovskites Pb2CoWO6 and Pb2FeTaO6. Ferroelectrics. 79, 201–204 (1988)

    Article  Google Scholar 

  15. Setter, N., Cross, L.E.: The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51, 4356–4360 (1980)

    Article  ADS  Google Scholar 

  16. Mitoseriu, L., Marre, D., Siri, A.S., Nanni, P.: Magnetic properties of PbFe2/3W1/3O3 - PbTiO3 solid solutions. J. Appl. Phy. 83, 5509–5511 (2003)

    ADS  Google Scholar 

  17. Smolenski, G.A., Agranovskaya, A.I., Isupov, V.A.: Sov. Phys. Sol. State. 1, 907 (1959)

    Google Scholar 

  18. Smolenskii, G.A.: J. Phys. Soc. Jpn. (Suppl.). 28, 26 (1970)

    Google Scholar 

  19. Baettig, P., Spaldin, N.A.: Ab initio prediction of a multiferroic with large polarization and magnetization. Appl. Phys. Lett. 86, 012505–012503 (2005)

    Article  ADS  Google Scholar 

  20. W. Qu, X. Tan, R. W. McCallum, D. P.Cann and E.Ustundag, Room temperature magnetoelectric multiferroism through cation ordering in complex perovskite solid solutions. J. Phys.: Condens. Matter 18, 8935–8942 (2006)

  21. Ivanov, S.A., Eriksson, S.G., Tellgren, R., Rundlof, H.: Nuclear and magnetic structure of Ba3Fe2WO9. Mater. Res. Bull. 39, 615–628 (2004)

    Article  Google Scholar 

  22. Farber, L., Valant, M., Akbas, M.A., Davies, P.K.: Cation ordering in Pb(Mg1/3Nb2/3)O3–Pb(Sc1/2Nb1/2)O3 (PMN–PSN) solid solutions. J. Am. Ceram. Soc. 85, 2319–2324 (2002)

    Article  Google Scholar 

  23. Ivanov, S.A., Beran, P., Bush, A.A., Sarkar, T., Shafeie, S., Wang, D., Eriksson, O., Sahlberg, M., Kvashnin, Y., Tellgren, R., Nordblad, P., Mathieu, R.: Cation ordering, ferrimagnetism and ferroelectric relaxor behavior in Pb(Fe1−xScx)2/3W1/3O3 solid solutions. Eur. Phys. J. B. 92, 163–116 (2019)

    Article  ADS  Google Scholar 

  24. Tan, X., Wongmaneerung, R., McCallum, R.W.: Ferroelectric and magnetic properties of Pb(Fe2∕3W1∕3)O3 -based multiferroic compounds with cation order. J. Appl.Phys. 102, 104114–104116 (2007)

    Article  ADS  Google Scholar 

  25. Wongmaneerung, R., Tan, X., McCallum, R.W., Ananta, S., Yimnirun, R.: Cation, dipole, and spin order in Pb(Fe2∕3W1∕3)O3 -based magnetoelectric multiferroic compounds. J. Appl. Phys. 90, 242905–242903 (2007)

    Google Scholar 

  26. Nechache, R., Harnagea, C., Pignolet, A., Normandin, F., Veres, T., Carignan, L.P., Menard, D.: Growth, structure, and properties of epitaxial thin films of first-principles predicted multiferroic Bi2FeCrO6. Appl. Phys. Lett. 89, 102902–102903 (2006)

    Article  ADS  Google Scholar 

  27. Joshi, D.C., Ivanov, S.A., Bush, A.A., Sarkar, T., Ye, Z.-G., Nordblad, P., Mathieu, R.: Room temperature ferrimagnetism in Yb- doped relaxor ferroelectric PbFe2/3W1/3O3. Appl. Phys. Lett. 115, 072902–072904 (2019)

    Article  ADS  Google Scholar 

  28. Y.N. Venevtsev, E.D. Politova, S.A. Ivanov, Ferro- and Antiferroelectrics of Barium Titanate Family, Chemistry, 256 (1985)

    Google Scholar 

  29. Yu. N. Venevtsev, V.V. Gagulin, V.N. Ljubimov, Ferroelectromagnets, 172(1982)

  30. Zhou, L., Vilarinho, P.M., Mantas, P.Q., Baptista, J.L., Fortunato, E.: The effects of La on the dielectric properties of lead iron tungstate Pb(Fe2/3W1/3)O3 relaxor ceramics. J. Eur. Ceram. Soc. 20, 1035–1041 (2000)

    Article  Google Scholar 

  31. S.A. Ivanov, Magnetoelectric complex metal oxides: mainfeatures of preparation, structure and properties, in Advanced Functional Materials, edited by B. Sanyal, O.Eriksson, 163, 234–241(2012) (Elsevier, Oxford, UK)

  32. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E.Bonilla, R.S. Katiyar, Impedance characteristics of Pb(Fe2/3W1/3)O3–BiFeO3composites,phys. stat. sol. (b)244, 2254–2266 (2007)

  33. Fraygola, B., Eiras, J.A.: Effect of magnetic ion doping on structural, electric and relaxor properties of Pb(Fe2/3W1/3)O3 multiferroic ceramics. Mater. Res. 17, 1594–1600 (2014)

    Article  Google Scholar 

  34. D. Lee, S.M. Yang, Y. Jo, T.K. Song, Room-temperature multiferroic properties of Pb(Zr0.57Ti0.43)O3-Pb(Fe0.67W0.33)O3 solid-solution epitaxial thin films, J. Korean Phys. Soc. 57, 1914–1918 (2010)

  35. Yokosuka, M., Kojima, H.: Dielectric and piezoelectric properties of the solid solution system Pb(Fe2/3W1/3)O3-PbZrO3. Jpn. J. Appl. Phys. 36, 6046–6050 (1997)

    Article  ADS  Google Scholar 

  36. S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, H. Rundlof, Structural, magnetic and Mössbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3, Solid State Sci. 9, 440–450 (2007)

  37. Szwagierczak, D., Kulawik, J.: Influence of MnO2 and Co3O4 dopants on dielectric properties of Pb(Fe2/3W1/3)O3 ceramics. J. Eur. Ceram. Soc. 25, 1657–1662 (2005)

    Article  Google Scholar 

  38. Zhou, L., Vilarinho, P.M., Baptista, J.L.: The characteristics of the diffuse phase transition in Mn doped Pb(Fe2/3W1/3)O 3 relaxor ceramics. J. Appl. Phys. 85, 2312–2317 (1999)

    Article  ADS  Google Scholar 

  39. Brzezinska, D., Skulski, R., Bochenek, D., Niemiec, P., Chrobak, A., Fajfrowski, L., Matyjasik, S.: The magnetic and electric properties of PZT-PFW-PFN ceramics. J. Alloys Compd. 737, 299–307 (2018)

    Article  Google Scholar 

  40. Matteppanavar, S., Rayaprol, S., Angadi, B., Sahoo, B.: Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb(Fe0.634W0.266Nb0.1)O3, ceramic. J. Supercond. Nov. Magn. 30(1317–1325), 1317 (2017)

    Article  Google Scholar 

  41. Vilarinho, P.M., Zhou, L., Pockl, M., Marques, N., Baptista, J.L.: Dielectric properties of Pb(Fe2/3W1/3)O3–PbTiO3solid-solution ceramics. J. Am. Ceram. Soc. 83, 1149–1152 (2000)

    Article  Google Scholar 

  42. Feng, L., Guo, H., Ye, Z.G.: Magnetic ordering in relaxor ferroelectric (1 − x)Pb(Fe2/3W1/3)O3xPbTiO3 single crystals. J. Mater. Res. 22, 2116–2124 (2006)

    Article  ADS  Google Scholar 

  43. Dulkin, E., Mojaev, E., Roth, M., Kamba, S., Vilarinho, P.M.: Burns, Néel, and structural phase transitions in multiferroic Pb(Fe2/3W1/3)O3 –xPbTiO3 detected by an acoustic emission. J. Appl. Phys. 103, 083542–083545 (2008)

    Article  ADS  Google Scholar 

  44. Lebeugle, D., Colson, D., Forget, A., Viret, M.: Very large spontaneous electric polarization in BiFeO3 single crystal at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91, 022907(1)–022907(3) (2007)

    Article  ADS  Google Scholar 

  45. Kaczmarek, W., Pajak, Z., Polomska, M.: Differential thermal analysis of phase transitions in (Bi1-xLax)FeO3 solid solutions. Solid State Commun. 17, 807–810 (1975)

    Article  ADS  Google Scholar 

  46. Azuma, M., Takata, K., Saito, T., Ishiwata, S., Shimakawa, Y., Takano, M.: Designed ferromagnetic ferroelectric Bi(2)NiMnO(6). J. Am. Chem. Soc. 127, 8889–8892 (2005)

    Article  Google Scholar 

  47. V. R. Palkar, D. C. Kundaliya, S. K. Malik, and S. Bhattacharya, Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system, Phys. Rev. B 69, 212102–3 (2004)

  48. Singh, A., Senyshyn, A., Fuess, H., Chatterji, T., Pandey, D.: Neutron powder diffraction study of nuclear and magnetic structures of multiferroic (Bi0.8Ba0.2)(Fe0.8Ti0.2)O3: evidence for isostructural phase transition and magnetoelastic and magnetoelectric couplings. Phys. Rev. B. 83(054406–9), (2011)

  49. I. Shivaraja, S. Matteppanvar, S. T. Dadami, S. Rayaprol, B. Angadi, Synthesis, structural and electron paramagnetic resonance studies on Pb0.9Bi0.1Fe0.7W0.3O3 ceramic, AIP. Con. Proceed.1942, 140015–4 (2018)

  50. P.S.R. Krishna, A.B. Shinde, A. das, S.S. Naik, S.K. Pranjepe and M. Ramanandham, Sol.Sta.phy. 45,149, (2002)

  51. J. Rodriguez-Carvajal Laboratory, FULLPROF, a Rietveld and pattern matching and analysis programs version 2018, Laboratoire Leon Brillouin, CEA-CNRS, France

  52. Matsnev, M.E., Rusakov, V.S.: SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP. Con. Proceed. 1489, 178–174 (2012)

    Article  ADS  Google Scholar 

  53. Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 192, 55–69 (1993)

    Article  ADS  Google Scholar 

  54. Shidaling Matteppanavar, Sudhindra Rayaprol, A.V. Anupama, Basavaraj Angadi, Balaram Sahoo, Origin of room temperature weak-ferromagnetism in antiferromagnetic Pb(Fe2/3W1/3)O3, Cer. Inter. 41, 1–7 (2015)

  55. R. N. P. Choudhary, Dillip K. Pradhan, C. M. Tirado, G. E. Bonilla, and R. S. Katiyara, Relaxor characteristics of Pb(Fe2/3W1/3)O3–BiFeO3 solid solution prepared by mechanosynthesis route, J. Appl. Phys. 100, 084105–8 (2006)

  56. S.A. Ivanov, P. Nordblad , R. Tellgren , T. Ericsson, H. Rundlof, Structural, magnetic and Mössbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3, Sol. Sta. Sci. 9, 440–450 (2007)

  57. Husson, E., Abello, L., Morell, A.: Short-range order in PbMg1/3Nb2/3O3 ceramics by Raman spectroscopy. Mater. Res. Bull. 25, 539–545 (1990)

    Article  Google Scholar 

  58. O. Svitelskiy, J. Toulouse, G Yong and Z. G. Ye, Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal, Phys. Rev. B 68, 104107–10(2003)

  59. Prosandeev, S.A., Cockayne, E., Burton, B.P., Kamba, S., Petzelt, J., Yuzyuk, Y., Katiyar, R.S., Vakhrushev, S.B.: Lattice dynamics in Pb(Mg1/3Nb2/3)O3. Phys. Rev. B. 70, 134110–134111 (2004)

    Article  ADS  Google Scholar 

  60. Haumont, R., Gemeiner, P., Dkhil, B., Kiat, J.M., Bulou, A.: Polar and chemical states at a nanometer scale in a PbSc1/2Nb1/2O3-PbTiO3 system investigated by Raman spectroscopy. Phys. Rev. B. 73, 104106–104105 (2006)

    Article  ADS  Google Scholar 

  61. Zhu, M., Chen, C., Tang, J., Hou, Y., Wang, H., Yan, H., Zhang, W., Chen, J., Zhang, W.J.: Effects of ordering degree on the dielectric and ferroelectric behaviors of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3 ceramics. Appl. Phys. 103, 084124–084126 (2008)

    Article  Google Scholar 

  62. Lebon, A., Marssi, E.M., Farhi, R., Dammak, H., Calvarin, G.: Translational and orientational order in lead zinc niobate: an optical and Raman study. J. Appl. Phys. 89, 3947–3954 (2001)

    Article  ADS  Google Scholar 

  63. R. Palai, Schmid, Hans, J. F. Scott, R. S. Katiyar,Raman spectroscopy of single-domain multiferroic BiFeO3, Phys. Rev. B 81,064110–7(2010)

  64. L. F. Cotica,V. F. Freitas,O. A. Protzek,J. A. Eiras, Garcia,F. Yokaichiya, I. A. Santos, R. Guo, and A. S. Bhalla,Tuning ferroic states in La doped BiFeO3-PbTiO3displacive multiferroic compounds, J. appl. phy. 116, 034107–6 (2014)

  65. Eibschutz, M., Shtrikman, S., Treves, D.: Mossbauer studies of Fe57 in Orthoferrites. Phys. Rev. B. 156, 562–577 (1967)

    Article  ADS  Google Scholar 

  66. James F. Scott, RatnakarPalai, Ashok Kumar, Manoj K. Singh, Nishit M. Murari, Naba K. Karan, and Ram S. Katiyar, New Phase Transitions in Perovskite Oxides: BiFeO3,SrSnO3,andPb(Fe2/3W1/3)1/2Ti1/2O3, J. Am. Ceram. Soc., 91 [6] 1762–1768 (2008)

  67. I. P. Raevski, S. P. Kubrin, S. I. Raevskaya, D. A. Sarychev, S. A. Prosandeev, and M. A. Malitskaya1, Magnetic properties of PbFe1/2Nb1/2O3: Mossbauer spectroscopy and first-principles calculations, Phy. Rev. B 85, 224412–5 (2012)

  68. Kuzian, R.O., Laguta, V.V., Richter, J.: Lieb-Mattis ferrimagnetic superstructure and superparamagnetism in Fe-based double perovskite multiferroics. Phy. Rev. B90, 134415–134417 (2014)

    Article  ADS  Google Scholar 

  69. Joyy, P.A., Anil Kumar, P.S., Date, S.K.: The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys. Condens. Matter. 10, 11049–11054 (1998)

    Article  ADS  Google Scholar 

  70. Laguta, V.V.: Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: an analog of ferroelectric relaxors? New J. Phys. 16, 113041–113019 (2014)

    Article  ADS  Google Scholar 

  71. Yang, J., Tong, W., Liu, Z., Zhu, X.B., Dai, J.M., Song, W.H., Yang, Z.R., Sun, Y.P.: Structural, magnetic, and EPR studies of the Aurivillius phase Bi6Fe2Ti3O18 and Bi6FeCrTi3O18. Phy. Rev. B. 86, 104410–104417 (2012)

    Article  ADS  Google Scholar 

  72. Feng Yan, Guozhong Xing, Rongming Wang & Lin Li, Tailoring surface phase transition and magnetic behaviors in BiFeO3 via doping engineering, sci. rep. 5 : 9128, 1–7 (2015)

  73. A. Shengelaya, Guo-meng Zhao, H. Keller, and K. A. Muller, B. I. Kochelaev, EPR in La1-xCaxMnO3+y: relaxation and bottleneck, Phy. Rev. B 61, 5888–5890 (2000)

  74. Janhavi, P., Joshi, R.G., Sood, A.K., Bhat, S.V., Raju, A.R., Rao, C.N.R.: Temperature-dependent electron paramagnetic resonance studies of charge-ordered Nd0.5Ca0.5MnO3. Phy. Rev. B. 65, 024410–024418 (2001)

    Article  ADS  Google Scholar 

  75. Bateni, A., Repp, S., Thomann, R., SelcukAcar, E.E., Somer, M.: Defect structure of ultrafine MgB2 nanoparticles. App. Phy. Lett. 105(202605–4), 202605 (2014)

    Article  ADS  Google Scholar 

  76. F. Menil. Systematic trends of the 57Fe Mӧssbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a New Correlation Between the Isomer Shift and the Inductive Effect of The Competing Bond T-X (*Fe) (Where X is O or F and T Any Element with a Formal Positive Charge). J. Phys. Chem. Solids, 46, 763–789 (1985)

  77. Pavlenko, A.V., Kubrin, S.P., Kozakov, A.T., Shilkina, L.A., Reznichenko, L.A., Nikolskii, A.V., Stashenko, V.V., Rusalev, Y.V., Petrosyan, K.S.: Phase transitions, dielectric, magnetic properties and valence of ions in AFe2/3W1/3O3±σ (a = Ba, Sr) multiferroic ceramics. J. Alloys Compd. 740, 1037–1045 (2018)

    Article  Google Scholar 

  78. Raevski, I.P., Kubrin, S.P., Raevskaya, S.I., Titov, V.V., Sarychev, D.A., Malitskaya, M.A., Zakharchenko, I.N., Prosandeev, S.A.: Experimental evidence of the crucial role of nonmagnetic Pb cations in the enhancement of the Néel temperature in perovskite Pb1−xBaxFe1/2Nb1/2O3. Phy. Rev. B. 80, 024108–024106 (2009)

    Article  ADS  Google Scholar 

  79. I. P. Raevski, V. V. Titov, M. A. Malitskaya, E. V. Eremin, S. P. Kubrin, A. V. Blazhevich, H. Chen, C. C. Chou, S. I. Raevskaya, I. N. Zakharchenko, D. A. Sarychev, S. I. Shevtsova. Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics. J. Mater. Sci. 49, 6459–6466 (2014)

  80. J.B. Goodenough, Magnetism and chemical bond, Interscience Publisher (a division of Hohn Wiley & Sons), New-York – London, 393 (1963)

Download references

Acknowledgments

The authors (SI, SM, and BA) thank UGC-DAE-CSR, Mumbai Centre, for the financial support and experimental facilities through the CRS-M-200 project. The author (SI) thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the SRF award. The author (SM) thanks the Vision Group on Science and Technology (VGST) Government of Karnataka for sanctioning the project in “Center for Excellence in Science Engineering and Medicine.” Also, the authors thank the DST–FIST and UGC-CPEPA program for providing XRD and Raman facilities, respectively, at the Department of Physics, Bangalore University, Bengaluru. Dr. SP Kubrin acknowledges the financial support from the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, Southern Federal University, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavaraj Angadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaraja, I., Matteppanavar, S., Krishna, P.S.R. et al. Neutron Diffraction Magnetic and Mossbauer Spectroscopic Studies of Pb0.8Bi0.2Fe0.728W0.264O3 and Pb0.7Bi0.3Fe0.762W0.231O3 Ceramics. J Supercond Nov Magn 34, 925–941 (2021). https://doi.org/10.1007/s10948-021-05805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05805-1

Keywords

Navigation