Skip to main content
Log in

Evidence of Weak Ferromagnetism, Space Charge Polarization, and Metal to Insulator Transition in Dy-Doped CaMnO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of Dy doping on CaMnO3 (CDMO) has been thoroughly investigated. The room-temperature structure, low-temperature magnetic transitions, and high-temperature electrical properties of CDMO were studied using X-ray diffraction, magnetization, and dielectric techniques. The CDMO exhibits an orthorhombic structure with Pnma symmetry. The low-temperature magnetic susceptibility data show the ferromagnetic domains embedded in the antiferromagnetic structure (G-type), and it confirms the Neel temperature (TN) approximately 55 K. Temperature-dependent dielectric data measured using a few selected frequencies show a high dielectric constant ~ 29,108,808 at 1 kHz. The presence of a high dielectric constant at the lower frequency side can be attributed to the space charge polarization (SCP) and compositional disorder (heterogeneity) in the compounds. The impedance cole-cole plot shows a depressed semicircle; mathematically these data were fitted by the Kohlrausch-Williams-Watt model. From this model obtained two mechanisms: (i) the electric modulus divulges the CDMO ceramic tails the Non-Debye type of relaxation and (ii) the electric modulus peak shifting evidence the charge carrier mobility from long range to short range. High-temperature dielectric, resistivity, and conductivity data show a clear anomaly around 461 K, owing to metal to insulator transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001)

    Article  ADS  Google Scholar 

  2. Tokura, Y.: Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006)

    Article  ADS  Google Scholar 

  3. de Gennes, P.-G.: Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141 (1960)

    Article  ADS  Google Scholar 

  4. von Helmot, R., Wecker, R., Holzapfel, J., Schultz, B., Samwer, L.: K, Giant-negative magnetoresistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  5. Mahesh, R., Mahendiran, R., Raychaudhuri, A.K., Rao, C.N.R.: Giant magnetoresistance in bulk samples of La {sub 1-x} A {sub x} MnO {sub 3} (A = Sr or Ca). J. Solid State Chem. 114, 297 (1995)

    Article  ADS  Google Scholar 

  6. Raveau, B., Maignan, A., Martin, C.: Insulator–metal transition induced by Cr and Co doping in Pr0.5Ca0.5MnO3. J. Solid State Chem. 130, 162 (1997)

    Article  ADS  Google Scholar 

  7. Martin, C., Maignan, A., Damay, F., Hervieu, M., Raveau, B.: CMR effect in electron-doped manganites Ca1− xSmxMnO3. J. Solid State Chem. 134, 198 (1997)

    Article  ADS  Google Scholar 

  8. Rao, C.N.R., Mahesh, R.: Curr. Opin. Giant magnetoresistance in manganese oxides. Solid State Mater. Sci. 2, 32 (1997)

    Article  Google Scholar 

  9. Rao, C.N.R., Santosh, A.P.N., Cheetham, A.K.: Charge-ordering in manganates. Chem. Mater. 10, 2714 (1998)

    Article  Google Scholar 

  10. Zenner, C.: Interaction between the -shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  11. Respaud, M., Broto, J.M., Rakoto, H., Vanacken, J., Wagner, P., Martin, C., Maignan, A., Raveau, B.: Phys. Rev. B. 63, 144426 (2001)

    Article  ADS  Google Scholar 

  12. De Teresa, J.M., Ibarra, M.R., Algarabel, P.A., Ritter, C., Marquina, C., Blasco, J., Garcia, J., del Moral, A., Arnold, Z.: Evidence for magnetic polarons in the magnetoresistive perovskites. Nature. 386, 256 (1997)

    Article  ADS  Google Scholar 

  13. Varma, C.M.: Electronic and magnetic states in the giant magnetoresistive compounds. Phys. Rev. B. 54, 7328 (1996)

    Article  ADS  Google Scholar 

  14. Wollen, E.O., Koehler, W.C.: Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds (1-x) LaxCaMnO3. Phys. Rev. 100, 545 (1955)

    Article  ADS  Google Scholar 

  15. Mac Chesney, J.B., Williams, H.J., Potter, J.F., Sherwood, R.C.: Magnetic study of the manganate phases: CaMnO3, Ca4Mn3O10, Ca3Mn2O7, Ca2MnO4. Phys. Rev. 164, 779 (1967)

    ADS  Google Scholar 

  16. Martin, C., Maignan, A., Hervieu, M., Raveau, B., Jirák, Z., Savosta, M.M., Kurbakov, A., Trounov, V., André, G., Bourée, F.: Structural study of the electron-doped manganites Sm0.1Ca0.9MnO3 and Pr0.1Sr0.9MnO3: evidence of phase separation. Phys. Rev. B. 62, 6442 (2000)

    Article  ADS  Google Scholar 

  17. Savosta, M.M., Novák, P., Maryško, M., Jirák, Z., Hejtmánek, J., Englich, J., Kohout, J., Martin, C., Raveau, B.: Coexistence of antiferromagnetism and ferromagnetism in Ca1−xPrxMnO3 (x < ~ 0.1) manganites. Phys. Rev. B. 62, 9532 (2000)

    Article  ADS  Google Scholar 

  18. Hagdorn, K., Hohlwein, D., Ihringer, J., Knorr, K., Prandl, W., Ritter, H., Schmid, H., Zeiske, T.: Canted antiferromagnetism and magnetoelastic coupling in metallic Ho0.1Ca0.9MnO3. Eur. Phys. J. B. 11, 243 (1999)

    Article  ADS  Google Scholar 

  19. Maignan, A., Martin, C., Hervieu, M., Raveau, B.: Ferromagnetism and metallicity in the CaMn1−x RuxO3 perovskites: a highly inhomogeneous system. Solid State Commun. 117, 377 (2001)

    Article  ADS  Google Scholar 

  20. Nguyen, D.T., Quoc, V.V., Son, W., Rhyee, J.-S., Koo, T.-Y., Song, S., Lee, N.-S., Kim, H.-J.: Growth, domain structure, and magnetic properties of CaMnO3(110) and La0.7Ca0.3MnO3 (110) layers synthesized on hexagonal YMnO3 (0001). CrystEngComm. 19, 5269–5274 (2017)

    Article  Google Scholar 

  21. Dunaevsky, S.M., Mikhailenko, E.K.: Magnetic properties of CaMnO3 layers on the (100) surface of BaTiO3, Journal of Surface Investigation: X-ray. Synchrotr. Neutr. Tech. 12, 200–203 (2018)

    Article  Google Scholar 

  22. Neetika, A., Das, I., Dhiman, A., Nigam, K., Yadav, A.K., Bhattacharyya, D., Meena, S.S.: Transport and magnetic properties of Fe doped CaMnO3. J. Appl. Phys. 112, 123913 (2012)

    Article  ADS  Google Scholar 

  23. Peng, S., Han, X., Li, L., Chou, S., Ji, D., Huang, H., Yonghua, D., Liu, J., Ramakrishna, S.: Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Energy Mater. 8(22), 1800612 (2018)

    Article  Google Scholar 

  24. Nag, R., Sarkar, B., Pal, S.: Emergence of Griffiths phase and magnetocaloric behavior in electron doped Ca0.85Nd0.15MnO3. J. Mater. Sci. Mater. Electron. 30, 3405–3410 (2019)

    Article  Google Scholar 

  25. Berbeth Mary, S., Francis, M., Sathe, V.G., Ganesan, V., Leo Rajesh, A.: Enhanced thermoelectric property of nanostructured CaMnO3 by sol-gel hydrothermal method. Phys. B Condens. Matter. 575, 411707 (2019)

    Article  Google Scholar 

  26. Ammu Vijay, R., Suhashini, R.J., Prasanth, S.C., Saravanan, K.V., et al.: AIP Conf. Proceed. 2220, 080029 (2020)

    Article  Google Scholar 

  27. Kim, C.M., Kim, D.H., Hong, H.Y., Park, K.: Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting. J. Eur. Ceram. Soc. 40(3), 735–741 (2020)

    Article  Google Scholar 

  28. Liu, K.K., Liu, Z.Y., Zhang, F.P., Zhang, J.X., Yang, X.Y., Zhang, J.W., Shic, J.L., Ren, G., Hea, T.W., Duana, J.J.: Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials. J. Alloys Compd. 808, 151476 (2019)

    Article  Google Scholar 

  29. Bondarenko, N., Kvashnin, Y., Chico, J., Bergman, A., Eriksson, O., Skorodumova, N.V.: Spin-polaron formation and magnetic state diagram in La-doped CaMnO3. Phys. Rev. B. 95, 220401(R) (2017)

    Article  ADS  Google Scholar 

  30. Jorge, M.E.M., Nunes, M.R., Maria, R.S., Sousa, D.: Metal−insulator transition induced by Ce doping in CaMnO3. Chem. Mater. 17(8), 2069–2075 (2005)

    Article  Google Scholar 

  31. Wang, Y., Sui, Y., Cheng, J., Wang, X., Zhe, L., Wenhui, S.: High temperature metal-insulator transition induced by rare-earth doping in perovskite CaMnO3. J. Phys. Chem. C. 113, 12509–12516 (2009)

    Article  Google Scholar 

  32. Rodrıguez-Carvajal, J.: Physica B. 192, 55 (1993)

    Article  ADS  Google Scholar 

  33. Goodwin, D.H., Neumeier, J.J., Lacerda, A.H., Torikachvili, M.S.: Paramagnetic susceptibility of the CMR compound La1-xCaxMnO3Mater. Res. Soc. Symp. Proc. 494, 95 (1998)

    Article  Google Scholar 

  34. Tanaka, J., Nozaki, H., Horiuchi, S., Tsukioka, M.: Experimental study of the magnetic behavior of (La0,8Ca 0,2) MnO3 prepared by the co-precipitation method. J. Phys. Lett. 44, L-129 (1983)

    Article  Google Scholar 

  35. Eibschutz, M., Shtrikman, S., Treves, D.: Mossbauer Studies of Fe57 in Orthoferrites. Phys. Rev. B. 156, 562–577 (1967)

    Article  ADS  Google Scholar 

  36. Chiba, H., Kikuchi, M., Kusaba, K., Muraoka, Y., Syono, Y.: Solid State Commun. 99, 499 (1996)

    Article  ADS  Google Scholar 

  37. Bao, W., Axe, J.D., Chen, C.H., Cheong, S.-W., Schiffer, P., Roy, M.: Physica B. 241-243, 418 (1997)

    Article  ADS  Google Scholar 

  38. Troyanchuk, I.O., Samsonenko, N.V., Szymczak, H., Nabialek, A.: Magnetoresistance properties in manganese and cobalt oxides J. Sol. State Chem. 131, 144 (1997)

    Article  ADS  Google Scholar 

  39. Thakur, S., Rai, R., Bdikin, I., Valente, M.A.: Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 Ceramics. Math. Res. 19(1), 1–8 (2016)

    Google Scholar 

  40. Pattanayak, S., Parida, B.N., Das, R.P., Choudary, R.N.P.: Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phy.A. 112, 387–395 (2013)

    Article  ADS  Google Scholar 

  41. Singh, G., Tiwari, V.S.: Effect of Zr concentration on conductivity behavior of (1-x)PMN-xPZ ceramic: an impedance spectroscopy analysis. J. Appl. Phys. 106, 124104–124108 (2009)

    Article  ADS  Google Scholar 

  42. Kaushal, A., Olhero, S.M., Singh, B., Duncan Fagg, P., Bdikin, I., Ferreira, J.M.F.: Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceram. Int. 40, 10593–10600 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors RB and SM thank the UGC DAE CSR Mumbai for providing experimental facilities. The author (SM) thanks the Vision Group on Science and Technology (VGST), for sanctioning the project under the scheme of Establishment of “Centre of Excellence in Science, Engineering and Medicine” (CESEM) (GRD Number: 852) Government of Karnataka. SM also thanks the KLE Society and B. K. College, Chikodi, Karnataka, India, for providing infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shidaling Matteppanavar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharamagoudar, R., Angadi, V.J., Shivaraja, I. et al. Evidence of Weak Ferromagnetism, Space Charge Polarization, and Metal to Insulator Transition in Dy-Doped CaMnO3. J Supercond Nov Magn 34, 837–844 (2021). https://doi.org/10.1007/s10948-020-05770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05770-1

Keywords

Navigation