Skip to main content
Log in

Magnetocaloric Properties of Ni-Rich Ni50−xCoxMn38Sn12B3 Shape Memory Ribbons

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

A Correction to this article was published on 30 June 2021

This article has been updated

Abstract

The present study presents the magnetocaloric effect (MCE) properties of Ni-rich Ni50−xCoxMn38Sn12B3 (x = 0, 1, 3, 5) ribbons during both heating and cooling processes. The Co substitution caused an increase of magnetization difference ΔM and hence an improvement of the MCE. An inverse giant magnetocaloric effect (IMCE) and a high effective refrigerant capacity RCeff were observed in the x = 3 ribbons. A high amount of Co (x = 5) content led to an inverse magnetic entropy ΔSM peak with a wide temperature range. Magnetostructural coupling over a wide temperature range is of great importance for technological purposes. On the other hand, the MCE properties were thermal hysteresis dependent, which has to be considered in the technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Pecharsky, J.V.K., Gschneidner, K.A.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (2013)

    Article  ADS  Google Scholar 

  2. Li, Z., Jiang, Y., Li, Z., Yang, B., Zhang, Y., Esling, C., Zhao, X., Zuo, L.: Phase transition and magnetocaloric properties of Mn50Ni42−xCoxSn8 (0 < x < 10) melt-spun ribbons. IUCrJ. 8, 54–66 (2018). https://doi.org/10.1107/S2052252517016220

    Article  Google Scholar 

  3. Hu, F., Shen, B., Sun, J., Cheng, Z., Rao, G., Zhang, X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 3675, 21–24 (2009)

    Google Scholar 

  4. Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 415, 150–152 (2002). https://doi.org/10.1038/415150a

    Article  ADS  Google Scholar 

  5. Manekar, M., Roy, S.B.: Reproducible room temperature giant magnetocaloric effect in Fe-Rh. J. Phys. D. Appl. Phys. 41, (2008). https://doi.org/10.1088/0022-3727/41/19/192004

  6. Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., Gutfleisch, O.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 1–7 (2012). https://doi.org/10.1038/nmat3334

    Article  Google Scholar 

  7. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Manosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005). https://doi.org/10.1038/nmat1395.nmat3334.19/192004

    Article  ADS  Google Scholar 

  8. Planes, A., Mãosa, L., Acet, M.: Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter. 21, (2009). https://doi.org/10.1088/0953-8984/21/23/233201

  9. Huang, L., Cong, D.Y., Suo, H.L., Wang, Y.D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 104, 132407 (2014). https://doi.org/10.1063/1.4870771

    Article  ADS  Google Scholar 

  10. Aydogdu, Y., Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z.D., Karaca, H.E.: The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J. Therm. Anal. Calorim. 126, 399–406 (2016). https://doi.org/10.1007/s10973-016-5576-6

    Article  Google Scholar 

  11. Zhang, B., Zhang, X.X., Yu, S.Y., Chen, J.L., Cao, Z.X., Wu, G.H.: Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Appl. Phys. Lett. 91, 012510 (2007). https://doi.org/10.1063/1.2753710

    Article  ADS  Google Scholar 

  12. Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn (Cu) shape-memory alloy. J. Appl. Phys. 113, 053506 (2013). https://doi.org/10.1063/1.4790140

    Article  ADS  Google Scholar 

  13. Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V.V., Mashirov, A., Aliev, A.M., Batdalov, A.B., Hernando, B., Rosa, W.O., González-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory alloy. J. Alloys Compd. 578, 157–161 (2013). https://doi.org/10.1016/j.jallcom.2013.04.074

    Article  Google Scholar 

  14. Samanta, T., Us Saleheen, A., Lepkowski, D.L., Shankar, A., Dubenko, I., Quetz, A., Khan, M., Ali, N., Stadler, S.: Asymmetric switching like behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys. Phys. Rev. B Condens. Matter Mater. Phys. 90, (2014). https://doi.org/10.1103/PhysRevB.90.064412

  15. Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x = 14–16) upon martensitic transformation. Appl. Phys. Lett. 89, 162503 (2006). https://doi.org/10.1063/1.2362581

    Article  ADS  Google Scholar 

  16. Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., Oikawa, K.: Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004). https://doi.org/10.1063/1.1808879

    Article  ADS  Google Scholar 

  17. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys. Phys. Rev. B Condens. Matter Mater. Phys. 73, 174413 (2006). https://doi.org/10.1103/PhysRevB.73.174413

    Article  ADS  Google Scholar 

  18. Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010). https://doi.org/10.1038/nmat2731

    Article  ADS  Google Scholar 

  19. Pathak, A.K., Dubenko, I., Stadler, S., Ali, N.: The effect of partial substitution of In by Si on the phase transitions and respective magnetic entropy changes of Ni50Mn35In15 Heusler alloy. J. Phys. D. Appl. Phys. 41, 202004 (6pp) (2008). https://doi.org/10.1088/0022-3727/41/20/202004

    Article  ADS  Google Scholar 

  20. Chattopadhyay, M.K., Manekar, M.A., Sharma, V.K., Arora, P., Tiwari, P., Tiwari, M.K., Roy, S.B.: Contrasting magnetic behavior of Ni50Mn35In15 and Ni50Mn34.5In15.5 alloys. J. Appl. Phys. 108, 073909 (2010). https://doi.org/10.1063/1.3478774

    Article  ADS  Google Scholar 

  21. Kirat, G., Kizilaslan, O., Aksan, M.A.: Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J. Magn. Magn. Mater. 477, 366–371 (2019). https://doi.org/10.1016/j.jmmm.2019.01.071

    Article  ADS  Google Scholar 

  22. Gschneidner Jr., K.A., Pecharsky, V.K.: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387

    Article  ADS  Google Scholar 

  23. Khattak, K.S., Aslani, A., Nwokoye, C.A., Siddique, A., Bennett, L.H., Della Torre, E.: Magnetocaloric properties of metallic nanostructures. Cogent Eng. 2, 1050324 (2015). https://doi.org/10.1080/23311916.2015.1050324

    Article  Google Scholar 

  24. Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Gu, B.X., Du, Y.W.: Low-field inverse magnetocaloric effect in Ni50−xMn39+xSn11 Heusler alloys. 042507, 37–40 (2013). https://doi.org/10.1063/1.2435593

  25. Esakki Muthu, S., Rama Rao, N.V., Manivel Raja, M., Raj Kumar, D.M., Mohan Radheep, D., Arumugam, S.: Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50−xMn37+xSn13 Heusler alloys. J. Phys. D. Appl. Phys. 43, (2010). https://doi.org/10.1088/0022-3727/43/42/425002

  26. Ghosh, A., Mandal, K.: Effect of structural disorder on the magnetocaloric properties of Ni-Mn-Sn alloy, 031905, vol. 104, p. 031905 (2014). https://doi.org/10.1063/1.4862431

    Book  Google Scholar 

  27. Zhang, Y., Zhang, L., Zheng, Q., Zheng, X., Li, M., Du, J., Yan, A.: Enhanced magnetic refrigeration properties in Mn-rich Ni-Mn-Sn ribbons by optimal annealing. Nat. Publ. Group. 5, 1–11 (2015). https://doi.org/10.1038/srep11010

    Article  Google Scholar 

  28. Paul, S., Ghosh, S.: First-principles prediction of shape memory behavior and ferrimagnetism in Mn2NiSn. J. Phys. Condens. Matter. 23, 206003 (2011). https://doi.org/10.1088/0953-8984/23/20/206003

    Article  ADS  Google Scholar 

  29. Xuan, H.C., Zheng, Y.X., Ma, S.C., Cao, Q.Q., Wang, D.H., Du, Y.W., Xuan, H.C., Zheng, Y.X., Ma, S.C., Cao, Q.Q., Wang, D.H., Du, Y.W.: The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43−xSn10 ferromagnetic. 103920, 1–5 (2011). https://doi.org/10.1063/1.3511748

  30. Wang, S.Q., Li, Y.Z., Zhen, C.M., Hou, D.L., Wang, W.H., Chen, J.L., Wu, G.H.: Martensitic and magnetic transformation in Mn50Ni50xSnx ferromagnetic shape memory alloys. 083902, 2010–2014 (2012). https://doi.org/10.1063/1.4758180

  31. Tao, Q., Han, Z.D., Wang, J.J., Qian, B., Zhang, P., Jiang, X.F., Wang, D.H., Du, Y.W.: Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys. 042181, 0–8 (2014). https://doi.org/10.1063/1.4772626

  32. Ghosh, A., Mandal, K.: Large magnetic entropy change and magnetoresistance associated with a martensitic transition of Mn-rich. J. Phys. D. Appl. Phys. 46, 435001 (2013). https://doi.org/10.1088/0022-3727/46/43/435001

    Article  ADS  Google Scholar 

  33. Liu, J., Scheerbaum, N., Lyubina, J., Gutfleisch, O.: Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co. Appl. Phys. Lett. 93, 102512 (2008). https://doi.org/10.1063/1.2981210

    Article  ADS  Google Scholar 

  34. Zhang, Y., Liu, J., Zheng, Q., Zhang, J., Xia, W., Du, J., Yan, A.: Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys. Scr. Mater. 75, 26–29 (2014). https://doi.org/10.1016/j.scriptamat.2013.11.009

    Article  ADS  Google Scholar 

  35. Tan, C., Tai, Z., Zhang, K., Tian, X., Cai, W.: Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping. Sci. Rep. 7, 43387 (2017). https://doi.org/10.1038/srep43387

  36. Tan, C.L., Feng, Z.C., Zhang, K., WU, M.Y., Tian, X.H., Guo, E.J.: Microstructure, martensitic transformation and mechanical properties of Ni–Mn–Sn alloys by substituting Fe for Ni. Trans. Nonferrous Met. Soc. China (English Ed.). 27, 2234–2238 (2017). https://doi.org/10.1016/S1003-6326(17)60249-8

    Article  Google Scholar 

  37. Zhang, H., Zhang, X., Qian, M., Wei, L., Xing, D., Sun, J., Geng, L.: Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. J. Alloys Compd. 715, 206–213 (2017). https://doi.org/10.1016/j.jallcom.2017.04.277

    Article  Google Scholar 

  38. Qu, Y.H., Cong, D.Y., Sun, X.M., Nie, Z.H., Gui, W.Y., Li, R.G., Ren, Y., Wang, Y.D.: Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys. Acta Mater. 134, 236–248 (2017). https://doi.org/10.1016/j.actamat.2017.06.010

    Article  ADS  Google Scholar 

  39. Cong, D.Y., Huang, L., Hardy, V., Bourgault, D., Sun, X.M., Nie, Z.H., Wang, M.G., Ren, Y., Entel, P., Wang, Y.D.: Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. Acta Mater. 146, 142–151 (2018). https://doi.org/10.1016/j.actamat.2017.12.047

    Article  ADS  Google Scholar 

  40. Liu, C., Zhang, Y., Liu, Y., Sun, J., Huang, Y., Kang, B., Deng, D., Jing, C., Li, Z., Zhang, Y., Xu, K.: Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48−xCuxNi42Sn10 Heusler alloys. Phys. B Condens. Matter. 508, 118–123 (2017). https://doi.org/10.1016/j.physb.2016.12.026

    Article  ADS  Google Scholar 

  41. Cong, D.Y., Roth, S., Schultz, L.: Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys. Acta Mater. 60, 5335–5351 (2012). https://doi.org/10.1016/j.actamat.2012.06.034

    Article  ADS  Google Scholar 

  42. Cong, D.Y., Roth, S., Pötschke, M., Hürrich, C., Schultz, L.: Phase diagram and composition optimization for magnetic shape memory effect in Ni-Co-Mn-Sn alloys. Appl. Phys. Lett. 97, (2010). https://doi.org/10.1063/1.3454239

  43. W. Ito, X. Xu, R.Y. Umetsu, T. Kanomata, K. Ishida, R. Kainuma, Concentration dependence of magnetic moment in Ni50−xCoxMn50−yZy (Z=In,Sn) Heusler alloys, Appl. Phys. Lett. 97 (2010) 3. doi:https://doi.org/10.1063/1.3525168, 242512

  44. Ghosh, A., Mandal, K.: Large inverse magnetocaloric effect in Ni48.5−xCoxMn37Sn14.5 (x = 0, 1 and 2) with negligible hysteresis. J. Alloys Compd. 579, 295–299 (2013). https://doi.org/10.1016/j.jallcom.2013.06.062

    Article  Google Scholar 

  45. Liu, K., Ma, S., Ma, C., Han, X., Yu, K., Yang, S., Zhang, Z., Song, Y., Luo, X., Chen, C., Rehman, S.U., Zhong, Z.: Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons. J. Alloys Compd. 790, 78–92 (2019). https://doi.org/10.1016/j.jallcom.2019.03.173

    Article  Google Scholar 

  46. Ghosh, S.: Effect of Si doping on magnetic and magnetocaloric properties of Ni–Co–Mn–Sn alloys. IEEE Trans. Magn. 54, 1–5 (2018). https://doi.org/10.1109/TMAG.2018.2832653

    Article  Google Scholar 

  47. Arumugam, S., Ghosh, S., Ghosh, A., Devarajan, U., Kannan, M., Govindaraj, L., Mandal, K.: Effect of hydrostatic pressure on the magnetic, exchange bias and magnetocaloric properties of Ni45.5Co2Mn37.5Sn15. J. Alloys Compd. 712, 714–719 (2017). https://doi.org/10.1016/j.jallcom.2017.04.127

    Article  Google Scholar 

  48. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–9 (2005). https://doi.org/10.1103/PhysRevB.72.014412

    Article  Google Scholar 

  49. Czaja, P., Przewoźnik, J., Gondek, L., Hawelek, Żywczak, A., Zschech, E.: Low temperature stability of 4O martensite in Ni49.1Mn38.9Sn12 metamagnetic Heusler alloy ribbons. J. Magn. Magn. Mater. 421, 19–24 (2017). https://doi.org/10.1016/j.jmmm.2016.07.065

    Article  ADS  Google Scholar 

  50. Tian, F., Zeng, Y., Xu, M., Yang, S., Lu, T., Wang, J., Chang, T., Adil, M., Zhang, Y., Zhou, C., Song, X.: A magnetocaloric effect arising from a ferromagnetic transition in the martensitic state in Heusler alloy of Ni50Mn36Sb8Ga6. Appl. Phys. Lett. 107, 012406 (2015). https://doi.org/10.1063/1.4926411

    Article  ADS  Google Scholar 

  51. Kizilaslan, O.: Thermal hysteresis dependent magnetocaloric effect properties of Ni50−xCuxMn38Sn12B3 shape memory ribbons. Intermetallics. 109, 135–138 (2019). https://doi.org/10.1016/j.intermet.2019.03.016

    Article  Google Scholar 

  52. Zhang, X., Zhang, H., Qian, M., Geng, L.: Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations. Sci. Rep. 8, 8235 (2018). https://doi.org/10.1038/s41598-018-26564-5

    Article  ADS  Google Scholar 

  53. Hernando, B., Llamazares, J.L.S., Santos, J.D., Sánchez, M.L., Escoda, L., Suñol, J.J., Varga, R., García, C., González, J.: Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: martensitic transformation and magnetic properties. J. Magn. Magn. Mater. 321, 763–768 (2009). https://doi.org/10.1016/j.jmmm.2008.11.105

    Article  ADS  Google Scholar 

  54. Luo, H., Meng, F., Jiang, Q., Liu, H., Liu, E., Wu, G., Wang, Y.: Effect of boron on the martensitic transformation and magnetic properties of Ni50Mn36.5Sb13.5−xBx alloys. Scr. Mater. 63, 569–572 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.009.1016/j.jmmm.2008.11.105

    Article  Google Scholar 

  55. Kübler, J., Williams, A.R.: Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B. 28, 1745–1755 (1983). https://doi.org/10.1103/PhysRevB.28.1745

    Article  ADS  Google Scholar 

  56. Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K.: Itinerant-electron metamagnetic transition and large magnetocaloric effects in (formula presented) compounds and their hydrides. Phys. Rev. B Condens. Matter Mater. Phys. 67, 12 (2003). https://doi.org/10.1103/PhysRevB.67.104416

    Article  Google Scholar 

  57. Balli, M., Fruchart, D., Gignoux, D., Dupuis, C., Kedous-Lebouc, A., Zach, R.: Giant magnetocaloric effect in Mn1−x(Ti0.5V0.5)xAs: experiments and calculations. J. Appl. Phys. 103, 2012–2015 (2008). https://doi.org/10.1063/1.2917323.1103/PhysRevB.67.104416

    Article  Google Scholar 

  58. Li, J.Q., Sun, W.A., Jian, Y.X., Zhuang, Y.H., Huang, W.D., Liang, J.K.: The giant magnetocaloric effect of Gd5Si1.95Ge2.05 enhanced by Sn doping. J. Appl Phys. 100, 073904 (2006). https://doi.org/10.1063/1.2355430

  59. Sun, N.K., Cui, W.B., Li, D., Geng, D.Y., Yang, F., Zhang, Z.D.: Giant room-temperature magnetocaloric effect in Mn1−xCrxAs. Appl. Phys. Lett. 92, 2006–2009 (2008). https://doi.org/10.1063/1.2884524

    Article  Google Scholar 

  60. Kim, Y.K., Wada, H., Itoh, S.: Shock compaction of MnAs1−xSbx powder using underwater shock wave. AIP Conf. Proc. 955, 1105–1108 (2007). https://doi.org/10.1063/1.2832911

    Article  ADS  Google Scholar 

  61. DagulaI, W., TegusI, O., FuquanI, B., Zhang, L., Si, P.Z., Zhang, M., Zhang, W.S., Brück, E., de Boer, F.R.: Magnetic-entropy change in Mn1.1Fe0.9P1−xGex compounds. IEEE Trans. Magn. 41, 2778–2780 (2005). https://doi.org/10.1109/TMAG.2005.854774

    Article  ADS  Google Scholar 

  62. Yan, A., Müller, K.H., Schultz, L., Gutfleisch, O.: Magnetic entropy change in melt-spun MnFePGe (invited). J. Appl. Phys. 99, (2006). https://doi.org/10.1063/1.2162807

  63. Yue, M., Li, Z.Q., Xu, H., Huang, Q.Z., Liu, X.B., Liu, D.M., Zhang, J.X.: Effect of annealing on the structure and magnetic properties of Mn1.1Fe0.9P0.8Ge0.2 compound. J. Appl. Phys. 107, 2778 (2010). https://doi.org/10.1063/1.3358620

    Article  Google Scholar 

  64. Recour, Q., Mazet, T., Malaman, B.: Magnetic and magnetocaloric properties of Mn3−xFexSn2 (0.1 ≤ x ≤ 0.9). J. Phys. D. Appl. Phys. 41, 1–6 (2008). https://doi.org/10.1088/0022-3727/41/18/185002

    Article  Google Scholar 

  65. Canepa, F., Cirafici, S., Napoletano, M., Merlo, F.: Magnetocaloric properties of Gd7Pd3 and related intermetallic compounds. IEEE Trans. Magn. 38, 3249–3251 (2002). https://doi.org/10.1109/TMAG.2002.802510

    Article  ADS  Google Scholar 

  66. Samanta, T., Dubenko, I., Quetz, A., Stadler, S., Ali, N.: Giant magnetocaloric effects near room temperature in Mn1−xCuxCoGe. Appl. Phys. Lett. 101, 24–27 (2012). https://doi.org/10.1063/1.4770379

    Article  Google Scholar 

  67. Krenke, T., Duman, E., Acet, M., Moya, X., Mañosa, L., Planes, A.: Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 102, 1–6 (2007). https://doi.org/10.1063/1.2761853

    Article  Google Scholar 

  68. Gao, B., Hu, F.X., Shen, J., Wang, J., Sun, J.R., Shen, B.G.: Field-induced structural transition and the related magnetic entropy change in Ni43Mn43Co3Sn11 alloy. J. Magn. Magn. Mater. 321, 2571–2574 (2009). https://doi.org/10.1016/j.jmmm.2009.03.047

    Article  ADS  Google Scholar 

  69. Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Prida, V.M., Baldomir, D., Serantes, D., Varga, R., González, J.: Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons. Appl. Phys. Lett. 92, 2012–2015 (2008). https://doi.org/10.1063/1.2904625

    Article  Google Scholar 

  70. Aguilar-Ortiz, C.O., Soto-Parra, D., Álvarez-Alonso, P., Lázpita, P., Salazar, D., Castillo-Villa, P.O., Flores-Zúñiga, H., Chernenko, V.A.: Influence of Fe doping and magnetic field on martensitic transition in Ni-Mn-Sn melt-spun ribbons. Acta Mater. 107, 9–16 (2016). https://doi.org/10.1016/j.actamat.2016.01.041

    Article  ADS  Google Scholar 

  71. Sahoo, R., Raj Kumar, D.M., Babu, D.A., Suresh, K.G., Raja, M.M.: In-plane and out of plane magnetic properties in Ni46Co4Mn38Sb12 ribbons. J. Appl. Phys. 113, 2013–2016 (2013). https://doi.org/10.1063/1.4800505

    Article  Google Scholar 

  72. Chen, X., Naik, V.B., Mahendiran, R., Ramanujan, R.V.: Optimization of Ni-Co-Mn-Sn Heusler alloy composition for near room temperature magnetic cooling. J. Alloys Compd. 618, 187–191 (2015). https://doi.org/10.1016/j.jallcom.2014.08.032

    Article  Google Scholar 

  73. Zhao, X.G., Tong, M., Shih, C.W., Li, B., Chang, W.C., Liu, W., Zhang, Z.D.: Microstructure, martensitic transitions, magnetocaloric, and exchange bias properties in Fe-doped Ni-Mn-Sn melt-spun ribbons. 913, 2012–2015 (2014). https://doi.org/10.1063/1.4794881

Download references

Acknowledgements

This work was supported by the Research Fund of Inonu University, Turkey under Grant Contract No. FBA-2020-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Kirat.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original vision of this article has been revised. The second author name has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirat, G., Kizilaslan, O. & Aksan, M.A. Magnetocaloric Properties of Ni-Rich Ni50−xCoxMn38Sn12B3 Shape Memory Ribbons. J Supercond Nov Magn 34, 581–588 (2021). https://doi.org/10.1007/s10948-020-05729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05729-2

Keywords

Navigation