Skip to main content
Log in

Effect of Zwitterionic Surfactant Ligand Monolayer on Magnetic Hyperthermia Properties of Monosize Fe3O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Here Brown relaxation time was altered to enhance magnetic hyperthermia value. Narrow size distributed, hydrophobic Fe3O4 nanoparticles were synthesized by solvothermal reflux method. It is reported that the existing both single step and two-step ligand exchange protocols could not replace hydrophobic surfactant ligand completely. Hence, as-synthesized samples were transferred into hydrophilic by completely removing the hydrophobic surfactant on the nanoparticles by high polar ionic liquids and ligated short-chain bidentate zwitterionic dopamine sulfonate on nanoparticles surface. The short molecules will fast up the Brown relaxation time compared to long molecule surfactant such as polyethylene glycol (PEG). The resultant sample shows magnetic hyperthermia value of 558 Js− 1g− 1 of Fe content at 316 kHz and 35.33 kA/m, at 2 mg/mL. The obtained hyperthermia is very high compared to long-chain PEG ligated Fe3O4 nanoparticles. It is attributed to relaxation time difference of long-chain PEG ligated Fe3O4 and short molecule zwitterion surfactant stabilized Fe3O4. Present hyperthermia results are the first report on zwitterionic dopamine sulfonate anchored Fe3O4 superparamagnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Akbarzadeh, A., Samiei, M., Davaran, S.: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7(1), 144 (2012). https://doi.org/10.1186/1556-276x-7-144

    Article  ADS  Google Scholar 

  2. Balivada, S., Rachakatla, R.S., Wang, H., Samarakoon, T.N., Dani, R.K., Pyle, M., Kroh, F.O., Walker, B., Leaym, X., Koper, O.B., Tamura, M., Chikan, V., Bossmann, S.H., Troyer, D.L.: A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1), 119 (2010). https://doi.org/10.1186/1471-2407-10-119

    Article  Google Scholar 

  3. Chen, R., Christiansen, M.G., Sourakov, A., Mohr, A., Matsumoto, Y., Okada, S., Jasanoff, A., Anikeeva, P.: High-performance ferrite nanoparticles through nonaqueous redox phase tuning. Nano. Lett. 16(2), 1345–1351 (2016). https://doi.org/10.1021/acs.nanolett.5b04761

    Article  ADS  Google Scholar 

  4. Chung, S.H., Hoffmann, A., Bader, S.D., Liu, C., Kay, B., Makowski, L., Chen, L.: Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett. 85(14), 2971–2973 (2004). https://doi.org/10.1063/1.1801687

    Article  ADS  Google Scholar 

  5. Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-Blackwell, Hoboken (2003). https://doi.org/10.1002/3527602097

    Book  Google Scholar 

  6. Dehsari, H.S., Harris, R.A., Ribeiro, A.H., Tremel, W., Asadi, K.: Optimizing the binding energy of the surfactant to iron oxide yields truly monodisperse nanoparticles. Langmuir 34(22), 6582–6590 (2018). https://doi.org/10.1021/acs.langmuir.8b01337

    Article  Google Scholar 

  7. Deissler, R.J., Martens, M.A., Wu, Y., Brown, R.: Brownian and Néel relaxation times in magnetic particle dynamics. In: 2013 International Workshop on Magnetic Particle Imaging. IEEE. https://doi.org/10.1109/iwmpi.2013.6528375 (2013)

  8. Dieckhoff, J., Eberbeck, D., Schilling, M., Ludwig, F.: Magnetic-field dependence of Brownian and Néel relaxation times. J. Appl. Phys. 119(4), 043,903 (2016). https://doi.org/10.1063/1.4940724

    Article  Google Scholar 

  9. Dill, K.A., Ghosh, K., Schmit, J.D.: Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. 108(44), 17,876–17,882 (2011). https://doi.org/10.1073/pnas.1114477108

    Article  Google Scholar 

  10. Dutta, B., Shetake, N.G., Gawali, S.L., Barick, B., Barick, K., Babu, P., Pandey, B., Priyadarsini, K., Hassan, P.: PEG mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J. Alloys Compd. 737, 347–355 (2018). https://doi.org/10.1016/j.jallcom.2017.12.028

    Article  Google Scholar 

  11. Ehsani, M.H., Esmaeili, S., Aghazadeh, M., Kameli, P., Karimzadeh, I.: Magnetic evaluation of the nanoparticles coated with polyvinylpyrrolidone and polyvinyl chloride nanoparticles synthesized by electro-deposition method for hyperthermia application. J. Supercond. Nov. Magn. 32(7), 2021–2030 (2018). https://doi.org/10.1007/s10948-018-4908-0

    Article  Google Scholar 

  12. Estephan, Z.G., Jaber, J.A., Schlenoff, J.B.: Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26(22), 16,884–16,889 (2010). https://doi.org/10.1021/la103095d

    Article  Google Scholar 

  13. Farzin, A., Etesami, S.A., Quint, J., Memic, A., Tamayol, A.: Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 9(9), 1901,058 (2020). https://doi.org/10.1002/adhm.201901058

    Article  Google Scholar 

  14. Franco, V., Blázquez, J., Ipus, J., Law, J., Moreno-Ramírez, L., Conde, A.: Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  15. García, K.P., Zarschler, K., Barbaro, L., Barreto, J.A., O’Malley, W., Spiccia, L., Stephan, H., Graham, B.: Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13), 2516–2529 (2014). https://doi.org/10.1002/smll.201303540

    Article  Google Scholar 

  16. Gawali, S.L., Barick, B., Barick, K., Hassan, P.: Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. J. Alloys Compd. 725, 800–806 (2017). https://doi.org/10.1016/j.jallcom.2017.07.206

    Article  Google Scholar 

  17. Gilchrist, R., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596–599 (1957)

    Article  Google Scholar 

  18. Gillooly, J.F.: Effects of size and temperature on metabolic rate. Science 293(5538), 2248–2251 (2001). https://doi.org/10.1126/science.1061967

    Article  ADS  Google Scholar 

  19. Ishii, M., Nakahira, M., Yamanaka, T.: Infrared absorption spectra and cation distributions in (Mn,Fe)3O4. Solid State Commun. 11(1), 209–212 (1972). https://doig.org/10.1016/0038-1098(72)91162-3

    Article  ADS  Google Scholar 

  20. Jordan, A., Wust, P., Fähling, H., John, W., Hinz, A., Felix, R.: Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int. J. Hyperthermia 25(7), 499–511 (2009). https://doi.org/10.3109/02656730903287790

    Article  Google Scholar 

  21. Keiser, J.T.: The electrochemical reduction of rust films on weathering steel surfaces. J. Electrochem. Soc. 129(12), 2686–2689 (1982). https://doi.org/10.1149/1.2123648

    Article  ADS  Google Scholar 

  22. Kolen’ko, Y.V., Bañobre-López, M., Rodríguez-Abreu, C., Carbó-Argibay, E., Sailsman, A., Piñeiro-Redondo, Y., Cerqueira, M.F., Petrovykh, D.Y., Kovnir, K., Lebedev, O.I., Rivas, J.: Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J. Phys. Chem. C 118(16), 8691–8701 (2014). https://doi.org/10.1021/jp500816u

    Article  Google Scholar 

  23. Kronmüller, H., Parkin, S. (eds.): Novel Materials: Ferro-, Ferri-, and Antiferrimagnetic Nanoparticles. Wiley, New York (2007). https://doi.org/10.1002/9780470022184

    Google Scholar 

  24. Lee, J.S., Cha, J.M., Yoon, H.Y., Lee, J.K., Kim, Y.K.: Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity. Sci. Rep. 5(1), 12,135 (2015). https://doi.org/10.1038/srep12135

    Article  Google Scholar 

  25. Li, Q., Kartikowati, C.W., Horie, S., Ogi, T., Iwaki, T., Okuyama, K.: Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7(1), 9894 (2017). https://doi.org/10.1038/s41598-017-09897-5

    Article  ADS  Google Scholar 

  26. Lide, D.R.: CRC handbook of chemistry and physics, 86th edition 2005-2006, 86 edn. CRC. https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-86th-Edition/Lide/p/book/9780849304859 (2005)

  27. Manohar, A., Krishnamoorthi, C.: Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J. Cryst. Growth 473, 66–74 (2017). https://doi.org/10.1016/j.jcrysgro.2017.05.013

    Article  ADS  Google Scholar 

  28. de Mello, L.B., Varanda, L.C., Sigoli, F.A., Mazali, I.O.: Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J. Alloys Compd. 779, 698–705 (2019). https://doi.org/10.1016/j.jallcom.2018.11.280

    Article  Google Scholar 

  29. Ritchie, M.E.: Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Sci. Rep. 8(1), 11,105 (2018). https://doi.org/10.1038/s41598-018-28833-9

    Article  Google Scholar 

  30. Rosensweig, R.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002). https://doi.org/10.1016/s0304-8853(02)00706-0

    Article  ADS  Google Scholar 

  31. Sarma, L., Borah, J.P., Srinivasan, A., Sarma, S.: Synthesis and characterization of tea polyphenol–coated magnetite nanoparticles for hyperthermia application. J. Supercond. Nov. Magn. 33(6), 1637–1644 (2019). https://doi.org/10.1007/s10948-019-05189-3

    Article  Google Scholar 

  32. Shaghasemi, B.S., Dehghani, E.S., Benetti, E.M., Reimhult, E.: Host–guest driven ligand replacement on monodisperse inorganic nanoparticles. Nanoscale 9(26), 8925–8929 (2017). https://doi.org/10.1039/c7nr02199b

    Article  Google Scholar 

  33. Shao, Q., Jiang, S.: Molecular understanding and design of zwitterionic materials. Adv. Mater. 27(1), 15–26 (2014). https://doi.org/10.1002/adma.201404059

    Article  ADS  Google Scholar 

  34. Sharma, K.S., Ningthoujam, R.S., Dubey, A.K., Chattopadhyay, A., Phapale, S., Juluri, R.R., Mukherjee, S., Tewari, R., Shetake, N.G., Pandey, B.N., Vatsa, R.K.: Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Sci. Rep. 8(1), 14,766 (2018). https://doi.org/10.1038/s41598-018-32934-w

    Article  Google Scholar 

  35. Smolensky, E.D., Park, H.Y.E., Berquó, T. S., Pierre, V.C.: Surface functionalization of magnetic iron oxide nanoparticles for MRI applications - effect of anchoring group and ligand exchange protocol. Contrast Media Mol. Imaging 6, 189–199 (2010). https://doi.org/10.1002/cmmi.417

    Google Scholar 

  36. Soares, P.I.P., Lochte, F., Echeverria, C., Pereira, L.C.J., Coutinho, J.T., Ferreira, I.M.M., Novo, C.M.M., Borges, J.P.M.R.: Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26(42), 425,704 (2015). https://doi.org/10.1088/0957-4484/26/42/425704

    Article  Google Scholar 

  37. Stauffer, P.R., Cetas, T.C., Jones, R.C.: Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans. Biomed. Eng. BME-31(2), 235–251 (1984). https://doi.org/10.1109/tbme.1984.325334

    Article  Google Scholar 

  38. Teicher, B.A. (ed.): Cancer Drug Resistance. Humana Press, New Jersey (2006). https://doi.org/10.1007/978-1-59745-035-5

    Google Scholar 

  39. Torres, T.E., Lima, E., Calatayud, M.P., Sanz, B., Ibarra, A., Fernández-Pacheco, R., Mayoral, A., Marquina, C., Ibarra, M.R., Goya, G.F.: The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia. Sci. Rep. 9, 3992 (2019). https://doi.org/10.1038/s41598-019-40341-y

    Article  ADS  Google Scholar 

  40. Yuen, A.K.L., Hutton, G.A., Masters, A.F., Maschmeyer, T.: The interplay of catechol ligands with nanoparticulate iron oxides. Dalton Trans. 41(9), 2545 (2012). https://doi.org/10.1039/c2dt11864e

    Article  Google Scholar 

  41. Ziabari, S.A.M., Babamoradi, M., Hajizadeh, Z., Maleki, A.: The effect of magnetic field on the magnetic and hyperthermia properties of Bentonite/Fe3O4 nanocomposite. Physica. B 588, 412,167 (2020). https://doi.org/10.1016/j.physb.2020.412167

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Prabhu, ARCI Chennai, for M-H loop and FESEM micrograph data measurement and Mr. T. Viswanathan, Department of Chemistry, VIT Vellore, for assisting in zwitterionic dopamine sulfonate synthesis.

Funding

The authors thank Vellore Institute of Technology (VIT) for providing “VIT SEED GRANT” for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Krishnamoorthi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Code Availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakanth, V., Krishnamoorthi, C. Effect of Zwitterionic Surfactant Ligand Monolayer on Magnetic Hyperthermia Properties of Monosize Fe3O4 Nanoparticles. J Supercond Nov Magn 34, 623–632 (2021). https://doi.org/10.1007/s10948-020-05716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05716-7

Keywords

Navigation