Skip to main content
Log in

Magnetization Dynamics Behavior in Y3Fe5O12 Particles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

YIG particles were obtained by Pechini method with a thermal annealing between 800 and 1200 °C. The formation of the cubic YIG phase was corroborated by means of X-ray diffraction (XRD), where YIG particles have crystallite size range between 107 and 303 nm. Magnetization dynamics were studied by means of magnetization hysteresis cycles, ferromagnetic resonance, and micromagnetic simulations. Different magnetic processes were determined as particle size function, and the magnetization dynamics can be explained by different contributions, such as single domain state, magnetic vortex state, and superparamagnetic behavior, besides considering their interactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Serga, A.A., Chumak, A.V., Hillebrands, B.: YIG magnonics. J. Phys. D. Appl. Phys. 43, 264002 (2010). https://doi.org/10.1088/0022-3727/43/26/264002

    Article  ADS  Google Scholar 

  2. Pardavi-Horvath, M.: Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  ADS  Google Scholar 

  3. Adam, J.D., Davis, L.E., Dionne, G.F., et al.: Ferrite devices and materials. IEEE Trans. Microwave Theory Tech. 50, 721–737 (2002). https://doi.org/10.1109/22.989957

    Article  ADS  Google Scholar 

  4. Klingler, S., Chumak, A.V., Mewes, T., et al.: Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. J. Phys. D. Appl. Phys. 48, 015001 (2015). https://doi.org/10.1088/0022-3727/48/1/015001

    Article  ADS  Google Scholar 

  5. Stancil, D., Prabhakar, A.: Spin waves. Springer US, Boston (2009)

    MATH  Google Scholar 

  6. Gilleo, M.A.: Ferromagnetic insulators: garnets. In: Wohlfarth, E.P. (ed.) Handbook of Magnetic Materials, vol. 2, 1st edn, pp. 1–53. North Holland Publishing Company (1980). https://doi.org/10.1016/S1574-9304(05)80102-6

  7. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  8. LeCraw, R.C., Spencer, E.G., Porter, C.S.: Ferromagnetic resonance line width in yttrium iron garnet single crystals. Phys. Rev. 110, 1311–1313 (1958). https://doi.org/10.1103/PhysRev.110.1311

    Article  ADS  Google Scholar 

  9. Ali, W.F.F.W., Othman, M., Ain, M.F., et al.: Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method. J. Eur. Ceram. Soc. 33, 1317–1324 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.12.016

    Article  Google Scholar 

  10. Wan Ali, W.F.F., Othman, M., Ain, M.F., et al.: The investigation of the phenomenological YIG phase formation within 1000°C to 1250°C: a kinetic approach. J. Am. Ceram. Soc. 99, 315–323 (2016). https://doi.org/10.1111/jace.13865

    Article  Google Scholar 

  11. Liu, J., Jin, Q., Wang, S., et al.: An insight into formation mechanism of rapid chemical co-precipitation for synthesizing yttrium iron garnet nano powders. Mater. Chem. Phys. 208, 169–176 (2018). https://doi.org/10.1016/J.MATCHEMPHYS.2018.01.030

    Article  Google Scholar 

  12. Zhang, W., Guo, C., Ji, R., et al.: Low-temperature synthesis and microstructure-property study of single-phase yttrium iron garnet (YIG) nanocrystals via a rapid chemical coprecipitation. Mater. Chem. Phys. 125, 646–651 (2011). https://doi.org/10.1016/j.matchemphys.2010.10.004

    Article  Google Scholar 

  13. Hosseini Vajargah, S., Madaah Hosseini, H.R., Nemati, Z.A.: Synthesis of nanocrystalline yttrium iron garnets by sol–gel combustion process: the influence of pH of precursor solution. Mater. Sci. Eng. B. 129, 211–215 (2006). https://doi.org/10.1016/j.mseb.2006.01.014

    Article  Google Scholar 

  14. Niaz Akhtar, M., Azhar Khan, M., Ahmad, M., et al.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014). https://doi.org/10.1016/j.jmmm.2014.06.004

    Article  ADS  Google Scholar 

  15. Sánchez-De Jesús, F., Cortés, C.A., Valenzuela, R., et al.: Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball milling. Ceram. Int. 38, 5257–5263 (2012). https://doi.org/10.1016/j.ceramint.2012.03.036

    Article  Google Scholar 

  16. Baños-López, E., Cortés-Escobedo, C.A., Sánchez-De Jesús, F., et al.: Crystal structure and magnetic properties of cerium-doped YIG: effect of doping concentration and annealing temperature. J. Alloys Compd. 730, 127–134 (2018). https://doi.org/10.1016/J.JALLCOM.2017.09.304

    Article  Google Scholar 

  17. Garskaite, E., Gibson, K., Leleckaite, A., et al.: On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chem. Phys. 323, 204–210 (2006). https://doi.org/10.1016/j.chemphys.2005.08.055

    Article  Google Scholar 

  18. Jang, M.S., Roh, I.J., Park, J., et al.: Dramatic enhancement of the saturation magnetization of a sol-gel synthesized Y3Fe5O12 by a mechanical pressing process. J. Alloys Compd. 711, 693–697 (2017). https://doi.org/10.1016/j.jallcom.2017.03.313

    Article  Google Scholar 

  19. Akhtar, M.N., Yousaf, M., Khan, S.N., et al.: Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho,Yb) nanoferrites for high frequency applications. Ceram. Int. 43, 17032–17040 (2017). https://doi.org/10.1016/J.CERAMINT.2017.09.115

    Article  Google Scholar 

  20. Gubin, S.P.: Introduction. In: Magnetic nanoparticles, pp. 1–23. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2009)

    Chapter  Google Scholar 

  21. Nagy, L., Williams, W., Muxworthy, A.R., et al.: Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales. Proc. Natl. Acad. Sci. 114, 10356–10360 (2017). https://doi.org/10.1073/pnas.1708344114

    Article  ADS  Google Scholar 

  22. Usov, N.A., Nesmeyanov, M.S., Tarasov, V.P.: Magnetic vortices as efficient nano heaters in magnetic nanoparticle hyperthermia. Sci. Rep. 8, 1224 (2018). https://doi.org/10.1038/s41598-017-18162-8

    Article  ADS  Google Scholar 

  23. Kim, M.-K., Dhak, P., Lee, H.-Y., et al.: Self-assembled magnetic nanospheres with three-dimensional magnetic vortex. Appl. Phys. Lett. 105, 232402 (2014). https://doi.org/10.1063/1.4903741

    Article  ADS  Google Scholar 

  24. Bertotti, G.: Hysteresis in magnetism: for physicists, materials scientists, and engineers. Academic Press. 163–186 (1998)

  25. Koksharov, Y.A.: Magnetism of nanoparticles: effects of size, shape, and interactions. In: Magnetic Nanoparticles, pp. 197–254. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2009)

    Chapter  Google Scholar 

  26. Chikazumi, S., Graham, C.D.: Physics of ferromagnetism (International Series of Monographs on Physics). Oxford University Press (1997)

  27. Globus, A., Duplex, P., Guyot, M.: Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Trans. Magn. 7, 617–622 (1971). https://doi.org/10.1109/TMAG.1971.1067200

    Article  ADS  Google Scholar 

  28. Sánchez, R.D., Ramos, C.A., Rivas, J., et al.: Ferromagnetic resonance and magnetic properties of single-domain particles of Y3Fe5O12 prepared by sol–gel method. Phys. B Condens. Matter. 354, 104–107 (2004). https://doi.org/10.1016/j.physb.2004.09.028

    Article  ADS  Google Scholar 

  29. Pechinim, M.P.: Method of preparing +2 valent metal yttrium and rare earth ferrites. (1969)

  30. Petrykin, V., Kakihana, M.: Chemistry and applications of polymeric gel precursors. In: Sakka, S., Kozuka, H. (eds.) Handbook of sol-gel science and technologyprocessing, characterization, and applications, Sol-Gel Processing, vol. I, pp. 77–103. Springer, New York (2005)

    Google Scholar 

  31. Danks, A.E., Hall, S.R., Schnepp, Z.: The evolution of “sol–gel” chemistry as a technique for materials synthesis. Mater Horiz. 3, 91–112 (2016). https://doi.org/10.1039/C5MH00260E

    Article  Google Scholar 

  32. Niyaifar, M., Mohammadpour, H., Dorafshani, M., Hasanpour, A.: Size dependence of non-magnetic thickness in YIG nanoparticles. J. Magn. Magn. Mater. 409, 104–110 (2016). https://doi.org/10.1016/j.jmmm.2016.02.097

    Article  ADS  Google Scholar 

  33. Macdonald, J.R.: Ferromagnetic resonance and the internal field in ferromagnetic materials. Proc. Phys. Soc. A. 64, 968 (1951)

    Article  ADS  Google Scholar 

  34. Ivanshin, V.A., Deisenhofer, J., Krug von Nidda, H.A., Loidl, A., Mukhin, A., Balbashov, J., Eremin, M.V.: Phys. Rev. B. 61, 6213 (2000)

    Article  ADS  Google Scholar 

  35. Donahue, M.J.: OOMMF user’s guide, version 1.0. Gaithersburg, MD. (1999)

  36. Beg, M., Pepper, R.A., Fangohr, H.: User interfaces for computational science: a domain specific language for OOMMF embedded in Python. AIP Adv. 7, 056025 (2017). https://doi.org/10.1063/1.4977225

    Article  ADS  Google Scholar 

  37. Wang, S., Wei, D., Gao, K.-Z.: Limits of discretization in computational micromagnetics. IEEE Trans. Magn. 47, 3813–3816 (2011). https://doi.org/10.1109/TMAG.2011.2157474

    Article  ADS  Google Scholar 

  38. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 240, 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  MATH  ADS  Google Scholar 

Download references

Funding

This work was supported by DGAPA-UNAM through the grant PAPIIT-IG100517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Montiel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Y3Fe5O12 (YIG) particles were obtained by the Pechini/polymeric precursor method.

• Saturation magnetization (Ms) and coercive field (Hc) have a strong dependence with crystallite size.

• Micromagnetic simulations showed the existence of single domain and vortex states in YIG particles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrón-López, J.F., Bolarín-Miró, A., De-Jesús, F.S. et al. Magnetization Dynamics Behavior in Y3Fe5O12 Particles. J Supercond Nov Magn 34, 551–559 (2021). https://doi.org/10.1007/s10948-020-05709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05709-6

Keywords

Navigation