Skip to main content
Log in

Superconducting Transport Properties of NiFe Artificial Spin Ice and Nb Hybrid Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

A Correction to this article was published on 31 August 2021

This article has been updated

Abstract

We report the influence of magnetic NiFe artificial spin ice (ASI) on the transport properties of superconducting Nb thin film. Resistivity (ρ) as a function of temperature (T ~ 1.8 to 300 K) and magnetic field (B ~ 0 to 40 kOe in parallel and perpendicular orientations with respect to the film plane) has been examined for two samples, a plain Nb thin film and a hybrid thin film of NiFe-ASI and Nb (Nb-NiFe). The impact of the magnetic NiFe-ASI on superconducting Nb is clearly visible in the transport properties, where, in comparison with plain Nb, for the Nb-NiFe hybrid thin film: (1) the normal state resistivity increases by a factor ~ 1.5; (2) the superconducting transition temperature (Tc) at B = 0 reduces from 7.31 to 6.51 K; (3) the surface sheath superconductivity vanishes as reflected by the parallel upper critical field, Bc2(T); and (4) the perpendicular Bc2(T) is suppressed in the entire T range. Interestingly, with the applied field, \( {T}_{\mathrm{c}}^{\mathrm{Nb}}-{T}_{\mathrm{c}}^{\mathrm{Nb}-\mathrm{NiFe}} \)|B increases in perpendicular and decreases in parallel field orientation. The magnetoresistance measurements near Tc for our Nb-NiFe hybrid thin film show shallow minima revealing matching pinning effects with respect to the ASI square lattice. The results are understood in terms of the thin film nature of our samples, geometrically frustrated magnetism of ASI and the proximity between the magnetic NiFe-ASI and superconducting Nb at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. Aladyshkin, A.Y., Silhanek, A.V., Gillijns, W., Moshchalkov, V.V.: Nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids. Supercond. Sci. Technol. 22, 053001 (2009). https://doi.org/10.1088/0953-2048/22/5/053001

    Article  ADS  Google Scholar 

  2. Blamire, M.G., Robinson, J.W.A.: The interface between superconductivity and magnetism: understanding and device prospects. J. Phys. Condens. Matter. 26, 453201 (2014). https://doi.org/10.1088/0953-8984/26/45/453201

    Article  ADS  Google Scholar 

  3. Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005). https://doi.org/10.1103/RevModPhys.77.1321

    Article  ADS  Google Scholar 

  4. Lyuksyutov, I.F., Pokrovsky, V.L.: Ferromagnet-superconductor hybrids. Adv. Phys. 54, 67–136 (2005). https://doi.org/10.1080/00018730500057536

    Article  ADS  Google Scholar 

  5. Del Valle, J., Gomez, A., Gonzalez, E.M., Osorio, M.R., Granados, D., Vicent, J.L.: Superconducting/magnetic three-state nanodevice for memory and reading applications. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep15210

    Article  Google Scholar 

  6. Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935 (2005)

    Article  ADS  Google Scholar 

  7. Pokrovsky, V.L., Wei, H.: Superconducting transition temperature in heterogeneous ferromagnet-superconductor systems. Phys. Rev. B - Condens. Matter Mater. Phys. 69, (2004). https://doi.org/10.1103/PhysRevB.69.104530

  8. Samal, D., Shivakumara, C., Kumar, P.S.A.: Magnetotransport study on La0.5 Sr0.5 Co O3-δ Y Ba2 Cu3 O7-δ La0.7 Ca0.3 Mn O3-δ trilayer system. Phys. Rev. B - Condens. Matter Mater. Phys. 77, 1–5 (2008). https://doi.org/10.1103/PhysRevB.77.094510

    Article  Google Scholar 

  9. Sefrioui, Z., Arias, D., Peña, V., Villegas, J.E., Varela, M., Prieto, P., León, C., Martinez, J.L., Santamaria, J.: Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B - Condens. Matter Mater. Phys. 67, 4–8 (2003). https://doi.org/10.1103/PhysRevB.67.214511

    Article  Google Scholar 

  10. Zhao, K., Huang, Y.H., Feng, J.F., Zhang, L., Wong, H.K.: Oscillatory superconducting transition temperature in YBa 2Cu4O8/La2/3Ca1/3MnO 3/YBa2Cu4O8 heterostructures. Phys. C. 418, 138–143 (2005). https://doi.org/10.1016/j.physc.2004.11.019

    Article  ADS  Google Scholar 

  11. Mühge, T.H., Garif’yanov, N.N., Goryunov, Y.U.V., Khaliullin, G.G., Tagirov, L.R., Westerholt, K., Garifullin, I.A., Zabel, H.: Possible origin for oscillatory superconducting transition temperature in superconductor/ferromagnet multilayers. Phys. Rev. Lett. 77, 1857–1860 (1996). https://doi.org/10.1103/PhysRevLett.77.1857

    Article  ADS  Google Scholar 

  12. Jiang, J.S., Davidović, D., Reich, D.H., Chien, C.L.: Oscillatory superconducting transition temperature in Nb/Gd multilayers. Phys. Rev. Lett. 74, 314–317 (1995). https://doi.org/10.1103/PhysRevLett.74.314

    Article  ADS  Google Scholar 

  13. Aladyshkin, Y., Fraerman, A., Mel’nikov, S., Ryzhov, A., Sokolov, V., Buzdin, I.: Domain-wall superconductivity in hybrid superconductor-ferromagnet structures. Phys. Rev. B - Condens. Matter Mater. Phys. 68, (2003). https://doi.org/10.1103/PhysRevB.68.184508

  14. Houzet, M., Buzdin, A.I.: Theory of domain-wall superconductivity in superconductor/ferromagnet bilayers. Phys. Rev. B - Condens. Matter Mater. Phys. 74, 1–9 (2006). https://doi.org/10.1103/PhysRevB.74.214507

    Article  Google Scholar 

  15. Zhu, L.Y., Chen, T.Y., Chien, C.L.: Altering the superconductor transition temperature by domain-wall arrangements in hybrid ferromagnet-superconductor structures. Phys. Rev. Lett. 101, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.101.017004

    Article  Google Scholar 

  16. Vélez, M., Martín, J.I., Villegas, J.E., Hoffmann, A., González, E.M., Vicent, J.L., Schuller, I.K.: Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320, 2547–2562 (2008). https://doi.org/10.1016/j.jmmm.2008.06.013

    Article  ADS  Google Scholar 

  17. Vlasko-Vlasov, V., Buzdin, A., Melnikov, A., Welp, U., Rosenmann, D., Uspenskaya, L., Fratello, V., Kwok, W.: Domain structure and magnetic pinning in ferromagnetic/superconducting hybrids. Phys. Rev. B - Condens. Matter Mater. Phys. 85, 1–15 (2012). https://doi.org/10.1103/PhysRevB.85.064505

    Article  Google Scholar 

  18. Martín, J.I., Vélez, M., Nogués, J., Schuller, I.K.: Flux pinning in a superconductor by an array of submicrometer magnetic dots. Phys. Rev. Lett. 79, 1929–1932 (1997). https://doi.org/10.1103/PhysRevLett.79.1929

    Article  ADS  Google Scholar 

  19. Vodolazov, D.Y., Gribkov, B.A., Klimov, A.Y., Rogov, V.V., Vdovichev, S.N.: Strong influence of a magnetic layer on the critical current of Nb bridge in finite magnetic fields due to surface barrier effect. Appl. Phys. Lett. 94, 012508 (2009). https://doi.org/10.1063/1.3030983

    Article  ADS  Google Scholar 

  20. Martín, J.I., Vélez, M., González, E.M., Hoffmann, A., Jaque, D., Montero, M.I., Navarro, E., Villegas, J.E., Schuller, I.K., Vicent, J.L.: Interplay between the vortex lattice and arrays of submicrometric pinning centers. Phys. C. 369, 135–140 (2002). https://doi.org/10.1016/S0921-4534(01)01231-X

    Article  ADS  Google Scholar 

  21. Montero, M.I., Stoll, O.M., Schuller, I.K.: Mechanisms of periodic pinning in superconducting thin films. Eur. Phys. J. B. 40, 459–462 (2004). https://doi.org/10.1140/epjb/e2004-00262-2

    Article  ADS  Google Scholar 

  22. Perrin, Y., Canals, B., Rougemaille, N.: Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice. Nature. 540, 410–413 (2016)

    Article  ADS  Google Scholar 

  23. Skjærvø, S.H., Marrows, C.H., Stamps, R.L., Heyderman, L.J.: Advances in artificial spin ice. Nat. Rev. Phys. 1–16 (2019)

  24. Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H., Schiffer, P.: Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature. 439, 303–306 (2006). https://doi.org/10.1038/nature04447

    Article  ADS  Google Scholar 

  25. Morgan, J.P., Stein, A., Langridge, S., Marrows, C.H.: Excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2010). https://doi.org/10.1038/nphys1853

    Article  Google Scholar 

  26. Ladak, S., Read, D.E., Perkins, G.K., Cohen, L.F., Branford, W.R.: Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010). https://doi.org/10.1038/nphys1628

    Article  Google Scholar 

  27. Budrikis, Z., Politi, P., Stamps, R.L.: Vertex dynamics in finite two-dimensional square spin ices. 017201, 1–4 (2010). https://doi.org/10.1103/PhysRevLett.105.017201

  28. Wysin, G.M., Wysin, G.M., Pereira, A.R., Silva, R.C., Nascimento, F.S., Wysin, G.M., Porro, J.M.: Dynamics and hysteresis in square lattice artificial spin ice. https://doi.org/10.1088/1367-2630/15/4/045029

  29. Qi, Y., Brintlinger, T., Cumings, J.: Direct observation of the ice rule in an artificial kagome spin ice. 1–4 (2008). https://doi.org/10.1103/PhysRevB.77.094418

  30. Lau, G.C., Freitas, R.S., Ueland, B.G., Muegge, B.D., Duncan, E.L., Schiffer, P., Cava, R.J.: Zero-point entropy in stuffed spin-ice. Nat. Phys. 2, 249–253 (2006)

    Article  Google Scholar 

  31. Ramirez, A.P., Hayashi, A., Cava, R.J., Siddharthan, R., Shastry, B.S.: Zero-point entropy in ‘spin ice.’. Nature. 399, 333–335 (1999)

    Article  ADS  Google Scholar 

  32. Morgan, J.P., Stein, A., Langridge, S., Marrows, C.H.: Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011)

    Article  Google Scholar 

  33. Castelnovo, C., Moessner, R., Sondhi, S.L.: Magnetic monopoles in spin ice. Nature. 451, 42–45 (2008)

    Article  ADS  Google Scholar 

  34. Rollano, V., Gomez, A., Martin, J.I.: Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. (2019)

  35. Wang, Y., Ma, X., Xu, J., Xiao, Z., Snezhko, A., Divan, R., Ocola, L.E., Pearson, J.E., Janko, B., Kwok, W.: Switchable geometric frustration in an artificial- spin-ice – superconductor heterosystem. 13, (2018). https://doi.org/10.1038/s41565-018-0162-7

  36. Kaur, M., Gupta, A., Varandani, D., Verma, A., Senguttuvan, T.D., Mehta, B.R., Budhani, R.C.: Magnetic reversal dynamics of NiFe-based artificial spin ice: effect of Nb layer in normal and superconducting state. J. Appl. Phys. 122, 193903 (2017). https://doi.org/10.1063/1.4990622

    Article  ADS  Google Scholar 

  37. Joshi, L.M., Verma, A., Rout, P.K., Kaur, M., Gupta, A., Budhani, R.C.: The 2D–3D crossover and anisotropy of upper critical fields in Nb and NbN superconducting thin films. Phys. C. 542, 12–17 (2017). https://doi.org/10.1016/j.physc.2017.08.008

    Article  ADS  Google Scholar 

  38. Stoll, O.M., Montero, M.I., Guimpel, J., Åkerman, J.J., Schuller, I.K.: Hysteresis and fractional matching in thin Nb films with rectangular arrays of nanoscaled magnetic dots. Phys. Rev. B - Condens. Matter Mater. Phys. 65, 1–8 (2002). https://doi.org/10.1103/PhysRevB.65.104518

    Article  Google Scholar 

  39. Hoffmann, A., Fumagalli, L., Jahedi, N., Sautner, J.C., Pearson, J.E., Mihajlović, G., Metlushko, V.: Enhanced pinning of superconducting vortices by magnetic vortices. Phys. Rev. B - Condens. Matter Mater. Phys. 77, 1–4 (2008). https://doi.org/10.1103/PhysRevB.77.060506

    Article  Google Scholar 

  40. Villegas, J.E., Smith, K.D., Huang, L., Zhu, Y., Morales, R., Schuller, I.K.: Switchable collective pinning of flux quanta using magnetic vortex arrays: experiments on square arrays of Co dots on thin superconducting films. Phys. Rev. B - Condens. Matter Mater. Phys. 77, 1–5 (2008). https://doi.org/10.1103/PhysRevB.77.134510

    Article  Google Scholar 

  41. Gliga, S., Iacocca, E., Heinonen, O.G.: Dynamics of reconfigurable artificial spin ice: toward magnonic functional materials. APL Mater. 8, 40911 (2020)

    Article  Google Scholar 

  42. Rusanov, A.Y., Hesselberth, M., Aarts, J., Buzdin, A.I.: Enhancement of the superconducting transition temperature in N b/permalloy bilayers by controlling the domain state of the ferromagnet. Phys. Rev. Lett. 93, 57002 (2004)

    Article  ADS  Google Scholar 

  43. Saint-James, D., de Gennes, P.G.: Onset of superconductivity in decreasing fields. Phys. Lett. 7, 306 (1963)

    Article  ADS  Google Scholar 

  44. Hauser, J.J.: Effect of a magnetic film coating on the superconducting surface sheath of a type II superconductor. Phys. Lett. 22, 378–379 (1966)

    Article  ADS  Google Scholar 

  45. Kharitonov, M.Y., Feigelman, M.V.: Enhancement of superconductivity in disordered films by parallel magnetic field. J. Exp. Theor. Phys. Lett. 82, 421–425 (2005)

    Article  Google Scholar 

  46. Metlushko, V.V., Baert, M., Jonckheere, R., Moshchalkov, V.V., Bruynseraede, Y.: Matching effects in Pb/Ge multilayers with the lattice of submicron holes. Solid State Commun. 91, 331–335 (1994)

    Article  ADS  Google Scholar 

  47. Kemmler, M., Gürlich, C., Sterck, A., Pöhler, H., Neuhaus, M., Siegel, M., Kleiner, R., Koelle, D.: Commensurability effects in superconducting Nb films with quasiperiodic pinning arrays. Phys. Rev. Lett. 97, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.97.147003

    Article  Google Scholar 

  48. Harada, K., Kamimura, O., Kasai, H., Matsuda, T., Tonomura, A., Moshchalkov, V.V.: Direct observation of vortex dynamics in superconducting films with regular arrays of defects. Science. 274, 1167–1170 (1996). https://doi.org/10.1126/science.274.5290.1167

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Director, CSIR-NPL, New Delhi, India for his support. Prof. R. C. Budhani (former Director, CSIR-NPL) is gratefully acknowledged for suggesting the research project. Apoorva Verma is grateful to University Grant Commission, India for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Gupta.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original vision of this article has been revised. Affiliation section has been updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Kaur, M., Senguttuvan, T.D. et al. Superconducting Transport Properties of NiFe Artificial Spin Ice and Nb Hybrid Structure. J Supercond Nov Magn 34, 373–381 (2021). https://doi.org/10.1007/s10948-020-05707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05707-8

Keywords

Navigation