Skip to main content

Conduction Mechanism and Dielectric Properties of Polycrystalline La0.53Ca0.47Mn0.5Cr0.5O3


The electric conductivity and dielectric properties of polycrystalline La0.53Ca0.47Mn0.5Cr0.5O3 are studied with impedance spectroscopy techniques over a wide range of frequencies and temperatures from 100 to 1 MHz and 100 and to 400 K, respectively. The material exhibits a semiconductor behavior in the whole temperature range, characterized by a change in the slope at a specific temperature with a saturation at ~ 360 K. At low temperature, the conduction mechanism is governed by distributed trap localized charge carrier states described by a variable-range hopping model. At high temperature, the conduction mechanism is thermally activated by a small polaron hopping process. At low frequencies, the high dielectric constants of the material decrease rapidly with frequency and increase with temperature due to the free charges accumulated at the electrode-sample interface (interfacial Maxwell–Wagner polarization). These high dielectric constants can be interpreted by the existence of grain boundaries. Additionally, the Nyquist plots are presented by two depressed not centered semicircles on the real axis, indicating non-Debye behavior for the material. The resistance of the grain boundaries is larger than the resistance of the grains, confirming that the grain boundaries govern the conductivity in La0.53Ca0.47Mn0.5Cr0.5O3. Finally, the modulus analysis indicates a transition of carrier mobility from the long range in the low-frequency region to the short range in the high-frequency region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. Tian, T., Scullion, D., Hughes, D., Li, L.H., Shih, C.J., Coleman, J., Chhowalla, M., Santos, E.J.G.: Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials. Nano Lett. 20, 841 (2020).

    Article  ADS  Google Scholar 

  2. Kumar, S., Ahlawat, N., Punia, S.: The effect of temperature on ferroelectric properties of CaCu 3Ti4O12 ceramic. In: AIP Conference Proceedings (2014) doi/abs/

  3. Moualhi, Y., Nofal, M.M., M’nassri, R., Rahmouni, H., Selmi, A., Gassoumi, M., Khirouni, K., Cheikrouhou, A.: Double Jonscher response and contribution of multiple mechanisms in electrical conductivity processes of Fe-PrCaMnO ceramic. Ceram. Int. 46, 1601 (2020).

    Article  Google Scholar 

  4. Moia, D., Gelmetti, I., Calado, P., Fisher, W., Stringer, M., Game, O., Hu, Y., Docampo, P., Lidzey, D., Palomares, E., Nelson, J., Barnes, P.R.F.: Ionic-to-electronic current amplification in hybrid perovskite solar cells: Ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy Environ. Sci. 12, 1296 (2019).

    Article  Google Scholar 

  5. Wang, Z., Yuan, C., Zhu, B., Feng, Q., Liu, F., Xu, J., Zhou, C., Chen, G.: Complex impedance spectroscopy of perovskite microwave dielectric ceramics with high dielectric constant. J. Am. Ceram. Soc. (2019).

  6. Zhang, Z., Schwanz, D., Narayanan, B., Kotiuga, M., Dura, J.A., Cherukara, M., Zhou, H., Freeland, J.W., Li, J., Sutarto, R., He, F., Wu, C., Zhu, J., Sun, Y., Ramadoss, K., Nonnenmann, S.S., Yu, N., Comin, R., Rabe, K.M., Sankaranarayanan, S.K.R.S., Ramanathan, S.: Perovskite nickelates as electric-field sensors in salt water. Nature. 553, 68 (2018).

    Article  ADS  Google Scholar 

  7. Yan, Z.B., Liu, J.M.: Resistance switching memory in perovskite oxides. Ann. Phys. (N. Y). (2015).

  8. Zhou, L., Xu, Y.F., Chen, B.X., Kuang, D.-B., Su, C.Y.: Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small. (2018).

  9. Deng, H., Yang, C.P., Zhou, Z.H., Wang, H., Baerner, K., Medvedeva, I.V.: Electroresistance effect in La1-xCaxMnO3 (0<x<1) ceramics. J. Phys. Chem. Solids. 71, 1660 (2010).

    Article  ADS  Google Scholar 

  10. Botta, P.M., Mira, J., Fondado, A., Rivas, J.: Dielectric behavior of La1-xCaxMnO3 (0.4 ≤ × ≤ 0.5). Bol. la Soc. Esp. Ceram. y Vidr. (2006).

  11. Mahmood, A., Warsi, M.F., Ashiq, M.N., Sher, M.: Improvements in electrical and dielectric properties of substituted multiferroic LaMnO 3 based nanostructures synthesized by co-precipitation method. Mater. Res. Bull. 47, 4197 (2012).

    Article  Google Scholar 

  12. Pandey, S., Kumar, J., Awasthi, A.M.: Magnetodielectric behaviour in La0.53Ca0.47MnO3. J. Phys. D. Appl. Phys. (2014).

  13. Wan, F., Bai, X., Song, K., Lin, X., Han, X., Zheng, J., Cao, C.: Structure and magnetism of Cr-doped h-YMnO3. J. Magn. Magn. Mater. 424, 371 (2017).

    Article  ADS  Google Scholar 

  14. Bonanos, N., Pissis, P., Macdonald, J.R.: Impedance spectroscopy of dielectrics and electronic conductors. In: Characterization of Materials (2012)

  15. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  16. Roisnel, T., Rodríguez-Carvajal, J.: WinPLOTR: a Windows Tool for Powder Diffraction Pattern Analysis. In: Materials Science Forum (2001)

  17. Brehm, J.A., Bennett, J.W., Schoenberg, M.R., Grinberg, I., Rappe, A.M.: The structural diversity of AB S3 compounds with d 0 electronic configuration for the B-cation. J. Chem. Phys. 140, 224703 (2014).

    Article  ADS  Google Scholar 

  18. Mott, N.F., Davis, E.A., Weiser, K.: Electronic processes in non-crystalline materials. Phys. Today. 25, 55 (1972).

    Article  ADS  Google Scholar 

  19. Ncib, W., Ben Jazia Kharrat, A., Saadi, M., Khirouni, K., Chniba-Boudjada, N., Boujelben, W.: Structural, AC conductivity, conduction mechanism and dielectric properties of La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 ceramic compound. J. Mater. Sci. Mater. Electron. (2019).

  20. Sekrafi, H.E., Ben Jazia Kharrat, A., Wederni, M.A., Chniba-Boudjada, N., Khirouni, K., Boujelben, W.: Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0, 0.04) compounds. J. Mater. Sci. Mater. Electron. (2019).

  21. Bettaibi, A., M’Nassri, R., Selmi, A., Rahmouni, H., Chniba-Boudjada, N., Cheikhrouhou, A., Khirouni, K.: Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite. J. Alloys Compd. (2015).

  22. Ahmad, I., Akhtar, M.J., Younas, M., Siddique, M., Hasan, M.M.: Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO 3. J. Appl. Phys. 112, 074105 (2012).

    Article  ADS  Google Scholar 

  23. Hcini, S., Selmi, A., Rahmouni, H., Omri, A., Bouazizi, M.L.: Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T=Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceram. Int. (2017).

  24. Charguia, R., Hcini, S., Boudard, M., Dhahri, A.: Microstructural properties, conduction mechanism, dielectric behavior, impedance and electrical modulus of La 0.6 Sr0.2Na0.2MnO3 manganite. J. Mater. Sci. Mater. Electron. (2019).

  25. Funke, K.: Jump relaxation in solid electrolytes. (1993)

  26. Khadhraoui, S., Triki, A., Hcini, S., Zemni, S., Oumezzine, M.: Variable-range-hopping conduction and dielectric relaxation in Pr 0.6Sr0.4Mn0.6Ti0.4O 3±δ perovskite. J. Magn. Magn. Mater. (2014).

  27. EL Kossi, S., Rayssi, C., Dhahri, A.H., Dhahri, J., Khirouni, K.: High dielectric constant and relaxor behavior in La0.7Sr0.25Na0.05Mn0.8Ti0.2O3 manganite. J. Alloys Compd. (2018).

  28. Cherif, K., Belkahla, A., Dhahri, J.: Impedance studies of La0.6Gd0.1Sr0.3Mn0.9In0.1O3 manganite prepared by the sol-gel method. J. Alloys Compd. (2019).

  29. Sassi, M., Bettaibi, A., Oueslati, A., Khirouni, K., Gargouri, M.: Electrical conduction mechanism and transport properties of LiCrP2O7 compound. J. Alloys Compd. 649, 642 (2015).

    Article  Google Scholar 

  30. Shamim, M.K., Sharma, S., Sinha, S., Nasreen, E.: Dielectric relaxation and modulus spectroscopy analysis of (Na0:47 K0:47 Li0:06) NbO3 ceramics. J. Adv. Dielectr. 07, 1750020 (2017).

    Article  ADS  Google Scholar 

  31. Mohamed, Z., Somrani, A., Hlil, E.K., Khirouni, K.: Dielectric properties and modulus behavior of La 0.67 Sr 0.16 Ca 0.17 MnO 3 ceramic prepared by solid state reaction. Phase Transit. (2019).

  32. Mohamed, Z., Brahem, R., Dhahri, J., Khirouni, K., Hlil, E.K.: Electrical properties of La0.67Sr0.16Ca0.17MnO3 perovskite. Phase Transit. (2016).

  33. Ben Messaoud, F., Rahmouni, H., Dhahri, A., Dhahri, J., Khirouni, K.: Electrical conductivity and complex impedance analysis of Ba2CrMo0.8W0.2O6 double perovskite. (2015)

  34. Dhahri, A., Dhahri, E., Hlil, E.K.: Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. (2018).

Download references


This work within the framework of collaboration is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Portuguese Ministry of Science, Technology and Higher Education.

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Riahi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khammassi, F., Cherif, W., Sales, A.J.M. et al. Conduction Mechanism and Dielectric Properties of Polycrystalline La0.53Ca0.47Mn0.5Cr0.5O3. J Supercond Nov Magn 34, 497–505 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Perovskite
  • Impedance
  • Conductivity
  • Dielectric constants