Skip to main content
Log in

High-Resolution Pinning GMR Sensors for Extremely Low Frequencies Powered by a Simple Alternating Current–Biased Scheme

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper presents a simple scheme for enhancing the resolution of giant magnetoresistance (GMR) sensors by making use of an AC-biased method. In doing so, an alternating voltage was used to power the GMR sensor. As in the case of high-frequency bias, significant suppression of low-frequency (1/f) noise was experimentally observed. With the bare GMR sensor, the 1/f noise value at 1 Hz was recorded to be 15 nT/√Hz, whereas applying the AC bias, the noise was reduced significantly by a factor of 30, with a minimum noise level of 0.5 nT/√Hz@1 Hz. Furthermore, the hysteresis (Hc) of the sensor was also collapsed from 0.1 to 0.015 mT with a negligible offset. The performance of the AC-biased scheme was verified by measuring the Earth’s magnetic field with the measured error being minimized from 2.5 μT down to 0.4 μT. The favorable results indicate that the proposed scheme is a pertinent way to improve the resolution of pinning GMR sensors in ultra-weak magnetic fields and static magnetic field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grosz, A., Haji-Sheikh, M.J., Mukhopadhyay, S.C.: High sensitivity magnetometers (Smart sensors, measurement and instrumentation), vol. 19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-34070-8

  2. Freitas, P.P., Ferreira, R., Cardoso, S.: Spintronic sensors. Proc. IEEE. 104(10), 1894–1918 (2016). https://doi.org/10.1109/JPROC.2016.2578303

    Article  Google Scholar 

  3. Kim, D., Lee, J.-R., Shen, E., Wang, S.X.: Modeling and experiments of magneto-nanosensors for diagnostics of radiation exposure and cancer. Biomed. Microdevices. 15(4), 665–671 (2013). https://doi.org/10.1007/s10544-012-9678-z

    Article  Google Scholar 

  4. Krishna, V.D., Wu, K., Perez, A.M., Wang, J.-P.: Giant magnetoresistance-based biosensor for detection of influenza A virus. Front. Microbiol. 7(400), (2016). https://doi.org/10.3389/fmicb.2016.00400

  5. Kanai, H., Noma, K., Hong, J.: Advanced spin-valve GMR head. Fujitsu Sci. Tech. J. 37(2), 174–182 (2001)

    Google Scholar 

  6. Ferreira, H.A., Cardoso, F.A., Ferreira, R., Cardoso, S., Freitas, P.P.: Magnetoresistive DNA chips based on ac field focusing of magnetic labels. J. Appl. Phys. 99(8), 08P105 (2006). https://doi.org/10.1063/1.2162342

    Article  Google Scholar 

  7. Freitas, P.P., Cardoso, F.A., Martins, V.C., Martins, S.A.M., Loureiro, J., Amaral, J., Chaves, R.C., Cardoso, S., Fonseca, L.P., Sebastião, A.M., Pannetier-Lecoeur, M., Fermon, C.: Spintronic platforms for biomedical applications. Lab Chip. 12(3), 546–557 (2012). https://doi.org/10.1039/C1LC20791A

    Article  Google Scholar 

  8. Liu, X., Lam, K.H., Zhu, K., Zheng, C., Li, X., Du, Y., Liu, C., Pong, P.W.T.: Overview of spintronic sensors, Internet of Things, and smart living. arXiv e-prints. (2016)

  9. Stutzke, N.A., Russek, S.E., Pappas, D.P., Tondra, M.: Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys. 97(10), 10Q107 (2005). https://doi.org/10.1063/1.1861375

    Article  Google Scholar 

  10. Vopálenský, M., Ripka, P., Platil, A.N.: Precise magnetic sensors. Sens. Actuators A Phys. 106(1), 38–42 (2003). https://doi.org/10.1016/S0924-4247(03)00129-8

    Article  Google Scholar 

  11. Ripka, P., Tondra, M., Stokes, J., Beech, R.: AC-driven AMR and GMR magnetoresistors. Sens. Actuators A Phys. 76(1), 225–230 (1999). https://doi.org/10.1016/S0924-4247(99)00034-5

    Article  Google Scholar 

  12. Luong, V.S., Nguyen, A.T., Nguyen, A.T.: Exchange biased spin valve-based gating flux sensor. Measurement. 115, 173–177 (2018). https://doi.org/10.1016/j.measurement.2017.10.038

    Article  ADS  Google Scholar 

  13. Boukhenoufa, A., Dolabdjian, C.P., Robbes, D.: High-sensitivity giant magneto-inductive magnetometer characterization implemented with a low-frequency magnetic noise-reduction technique. IEEE Sensors J. 5(5), 916–923 (2005). https://doi.org/10.1109/JSEN.2004.841451

    Article  ADS  Google Scholar 

  14. Jander, A., Nordman, C.A., Pohm, A.V., Anderson, J.M.: Chopping techniques for low-frequency nanotesla spin-dependent tunneling field sensors. J. Appl. Phys. 93(10), 8382–8384 (2003). https://doi.org/10.1063/1.1555975

    Article  ADS  Google Scholar 

  15. Luong, V.S., Jeng, J.-T., Lu, C.-C., Hsu, H.-Y.: Low-noise tunneling-magnetoresistance vector magnetometers with flux chopping technique. Measurement. 109, 297–303 (2017). https://doi.org/10.1016/j.measurement.2017.05.062

    Article  ADS  Google Scholar 

  16. He, G., Zhang, Y., Qian, L., Xiao, G., Zhang, Q., Santamarina, J.C., Patzek, T.W., Zhang, X.: PicoTesla magnetic tunneling junction sensors integrated with double staged magnetic flux concentrators. Appl. Phys. Lett. 113(24), 242401 (2018). https://doi.org/10.1063/1.5052355

    Article  Google Scholar 

  17. Guedes, A., Patil, S.B., Cardoso, S., Chu, V., Conde, J.P., Freitas, P.P.: Hybrid magnetoresistive∕microelectromechanical devices for static field modulation and sensor 1∕f noise cancellation. J. Appl. Phys. 103(7), 07E924 (2008). https://doi.org/10.1063/1.2837661

    Article  Google Scholar 

  18. Luong, V.S., Nguyen, A.T., Hoang, Q.K., Nguyen, T.N., Nguyen, A.T., Nguyen, T.A., Giap, V.C.: Magnetoresistive performances in exchange-biased spin valves and their roles in low-field magnetic sensing applications. J. Sci. Adv. Mater. Devices. 3(4), 399–405 (2018). https://doi.org/10.1016/j.jsamd.2018.09.004

    Article  Google Scholar 

  19. Xie, F., Weiss, R., Weigel, R.: Hysteresis compensation method for magnetoresistive sensors based on single polar controlled magnetic field pulses. IEEE Trans. Ind. Electron. 64(1), 710–716 (2017). https://doi.org/10.1109/TIE.2016.2598520

    Article  Google Scholar 

  20. Luong, V., Jeng, J., Lai, B., Hsu, J., Chang, C., Lu, C.: Design of 3-D magnetic field sensor with single bridge of spin-valve giant magnetoresistance films. IEEE Trans. Magn. 51(11), 1–4 (2015). https://doi.org/10.1109/TMAG.2015.2443024

    Article  Google Scholar 

  21. Hu, J., Hu, J., Pan, M., Sun, K., Chen, D., Tian, W., Li, S., Du, Q., Wang, Y., Pan, L., Zhou, W., Zhang, Q., Li, P., Peng, J., Qiu, W., Zhou, J., Wu, X.: Hysteresis suppressing of modulated magnetoresistive sensors using bidirection pulse magnetization. IEEE Trans. Magn. 54(4), 1–5 (2018). https://doi.org/10.1109/TMAG.2017.2771372

    Article  Google Scholar 

  22. Xie, F., Weiss, R., Weigel, R.: Hysteresis compensation based on controlled current pulses for magnetoresistive sensors. IEEE Trans. Ind. Electron. 62(12), 7804–7809 (2015). https://doi.org/10.1109/TIE.2015.2458958

    Article  Google Scholar 

  23. Luong, V.S., Lu, C.-C., Yang, J.-W., Jeng, J.-T.: A novel CMOS transducer for giant magnetoresistance sensors. Rev. Sci. Instrum. 88(2), 025004 (2017). https://doi.org/10.1063/1.4976025

    Article  ADS  Google Scholar 

  24. GmbH, S.S.: GF708. https://www.sensitec.com/fileadmin/sensitec/Service_and_Support/Downloads/Data_Sheets/GF700/SENSITEC_GF708_DSE_05.pdf. Accessed accessed: June 04, 2020

  25. NVE, N.: AA and AB-series analog sensors. https://www.nve.com/analogSensors.php. Accessed accessed: June 04, 2020

  26. Xu, J., Li, Q., Gao, X.Y., Leng, F.F., Lü, M., Guo, P.Z., Zhao, G.X., Li, S.D.: Detection of the concentration of MnFe2O4 magnetic microparticles using giant magnetoresistance sensors. IEEE Trans. Magn. 52(4), 1–4 (2016). https://doi.org/10.1109/TMAG.2015.2497249

    Article  ADS  Google Scholar 

  27. Jeng, J., Hsu, T., Lu, C.: Odd-harmonic characteristics of the field-modulated GMR magnetometer. IEEE Trans. Magn. 47(10), 3538–3541 (2011). https://doi.org/10.1109/TMAG.2011.2148113

    Article  ADS  Google Scholar 

  28. Analog Devices A.: AD630: balanced modulator/demodulator. https://www.analog.com/media/en/technical-documentation/data-sheets/AD630.pdf. Accessed accessed: June 04, 2020

  29. Luong, V., Chang, C., Jeng, J., Lu, C., Hsu, J., Chang, C.: Reduction of low-frequency noise in tunneling-magnetoresistance sensors with a modulated magnetic shielding. IEEE Trans. Magn. 50(11), 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2329058

    Article  ADS  Google Scholar 

  30. Jeng, J.-T., Hsu, T.-Y.: Characteristics of the dual-bridge giant magnetoresistance magnetometer. Rev. Sci. Instrum. 82(3), 034701 (2011). https://doi.org/10.1063/1.3560071

    Article  ADS  Google Scholar 

  31. García-Romeo, D., Medrano, N., Calvo, B., Martínez, P.A., Cubells-Beltrán, M.D., Reig, C., Cardoso, S., Freitas, P.P.: Sub-mA current measurement by means of GMR sensors and state of the art lock-in amplifiers. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 3377–3381. IEEE - ICIT Conference (2015)

  32. Zhenghong, Q., Daughton, J.M., Dexin, W., Tondra, M.: Magnetic design and fabrication of linear spin-valve sensors. IEEE Trans. Magn. 39(5), 3322–3324 (2003). https://doi.org/10.1109/TMAG.2003.816764

    Article  ADS  Google Scholar 

  33. Lei, Z.Q., Li, G.J., Egelhoff, W.F., Lai, P.T., Pong, P.W.T.: Review of noise sources in magnetic tunnel junction sensors. IEEE Trans. Magn. 47(3), 602–612 (2011). https://doi.org/10.1109/TMAG.2010.2100814

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the project of the Vietnam Ministry of Education and Training under Grant No. B2018-BKA-09-CtrVL.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, validation, formal analysis, investigation, writing—original draft preparation: by Van Su Luong

Corresponding author

Correspondence to Van Su Luong.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luong, V.S. High-Resolution Pinning GMR Sensors for Extremely Low Frequencies Powered by a Simple Alternating Current–Biased Scheme. J Supercond Nov Magn 34, 339–345 (2021). https://doi.org/10.1007/s10948-020-05695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05695-9

Keywords

Navigation