Skip to main content
Log in

Influence of Ba2+ Doping on Structural and Electrical Transport Properties of YMnO3 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The pristine and barium (Ba2+) doped YMnO3 (Y1−xBaxMnO3; x = 0.00 and 0.05) ceramic samples were synthesized through the solid-state reaction method. The X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were performed for the structural and morphological studies. The electrical transport properties were investigated using dielectric and modulus spectroscopy. The XRD patterns of the titled ceramics have shown the monophasic hexagonal structure having P63cm space group symmetry. The average crystallite size is found to decrease on partial substitution of Ba2+ cation. Raman spectroscopy was performed to observe the local disorder and variation in the modes with the introduction of dopant in the pristine ceramic. The surface morphology displays the formation of non-uniform grains in the ceramics. The dielectric spectroscopy reveals a decreasing trend in both the dielectric constant and dissipation factor with increasing frequency. It indicates the significant role played by the space charge polarization. The electrical modulus study of the ceramics was also performed to explore the electrical transport phenomenon. The present study reports the enhanced dielectric nature of doped materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Van Aken, B.B., Palstra, T.T.M., Filippetti, A., Spaldin, N.A.: The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164 (2004). https://doi.org/10.1038/nmat1080

    Article  ADS  Google Scholar 

  2. Geller, S., Gilleo, M.A.: Structure and ferrimagnetism of yttrium and rare-earth–iron garnets. Acta Crystallogr. 10, 239 (1957). https://doi.org/10.1107/s0365110x57000729

    Article  Google Scholar 

  3. Lee, S., Pirogov, A., Kang, M., Jang, K.H., Yonemura, M., Kamiyama, T., Cheong, S.W., Gozzo, F., Shin, N., Kimura, H., Noda, Y., Park, J.G.: Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature. 451, 805 (2008). https://doi.org/10.1038/nature06507

    Article  ADS  Google Scholar 

  4. Singh, A.K., Patnaik, S., Kaushik, S.D., Siruguri, V.: Dominance of magnetoelastic coupling in multiferroic hexagonal YMnO3. Phys. Rev. B - Condens. Matter Mater. Phys. 81, 184406 (2010). https://doi.org/10.1103/PhysRevB.81.184406

  5. Lukaszewicz, K., Karut-Kalicinska, J.: X-ray investigations of the crystal structure and phase transitions of YMnO3. Ferroelectrics. 7, 81 (1974). https://doi.org/10.1080/00150197408237954

    Article  Google Scholar 

  6. Smolenskii, G.A., Bokov, V.A.: Coexistence of magnetic and electric ordering in crystals. J. Appl. Phys. 35, 915 (1964). https://doi.org/10.1063/1.1713535

    Article  ADS  Google Scholar 

  7. Cheong, S.W., Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. 6, 13-20 (2007).

  8. Pathak, B., Yadav, A., Choudhary, P., Varshney, M., Mishra, A.: Structural and phonon modes study of nano ceramics CoAl2O4 synthesized by sol–gel route. In: AIP Conference Proceedings (2019)

  9. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  10. Ravichandran, K., Muruganantham, G., Sakthivel, B.: Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique. Phys. B Condens. Matter. 404, 4299 (2009). https://doi.org/10.1016/j.physb.2009.08.017

    Article  ADS  Google Scholar 

  11. Khan, M., Mishra, A., Shukla, J., Sharma, P.: X-ray analysis of BaTiO3 ceramics by Williamson-Hall and size strain plot methods. AIP Conf Proc 2100, 1–6 (2019). https://doi.org/10.1063/1.5098692

  12. Iliev, M., Abrashev, M.: Raman spectroscopy of orthorhombic perovskitelike and. Phys. Rev. B - Condens. Matter Mater. Phys. 57, 2872 (1998). https://doi.org/10.1103/PhysRevB.57.2872

  13. Fukumura, H., Matsui, S., Harima, H., Kisoda, K., Takahashi, T., Yoshimura, T., Fujimura, N.: Raman scattering studies on multiferroic YMnO3. J. Phys. Condens. Matter. 19, 365239 (2007). https://doi.org/10.1088/0953-8984/19/36/365239

    Article  Google Scholar 

  14. Varshney, D., Sharma, P., Kumar, A.: Room temperature structure vibrational and dielectric properties of Ho modified YMnO3. Mater. Res. Express 2, (2015). https://doi.org/10.1088/2053-1591/2/7/076102

  15. Sangeeta, K., Maisnam, M., Phanjoubam, S.: Structural phase transition of yttrium manganites on nickel substitution. Integr. Ferroelectr. 193, 24 (2018). https://doi.org/10.1080/10584587.2018.1514867

    Article  Google Scholar 

  16. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  ADS  Google Scholar 

  17. Polat, O., Coskun, M., Coskun, F.M., Durmus, Z., Caglar, M., Turut, A.: Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J. Alloys Compd. 752, 274–288 (2018). https://doi.org/10.1016/j.jallcom.2018.04.200

    Article  Google Scholar 

  18. Mathad, S.N., Jadhav, R.N., Pawar, R.P., Puri, V.: Dielectric spectroscopy and microwave conductivity of bismuth strontium manganites at high frequencies. Electron. Mater. Lett. 9, 87 (2013). https://doi.org/10.1007/s13391-012-2109-8

    Article  ADS  Google Scholar 

  19. Shamim, M.K., Sharma, S., Sinha, S., Nasreen, E.: Dielectric relaxation and modulus spectroscopy analysis of (Na0:47 K0:47 Li0:06) NbO3 ceramics. J Adv Dielectr 07, 1750020 (2017). https://doi.org/10.1142/S2010135X17500205

  20. Sánchez-Pérez, M., Dura, O.J., Andrés, J.P., López Antón, R., Gonzalez, J.A., López De La Torre, M.A.: Influence of the orthorhombic phase content on the dielectric and magnetic properties of YMnO3. J. Appl. Phys. 126, (2019). https://doi.org/10.1063/1.5125217

  21. Funke, K.: Jump relaxation in solid electrolytes. Prog. Solid. State Ch. 22, 111-195 (1993). https://doi.org/10.1016/0079-6786(93)90002-9

  22. Rai, R., Coondoo, I., Rani, R., Bdikin, I., Sharma, S., Kholkin, A.L.: Impedance spectroscopy and piezoresponse force microscopy analysis of lead-free (1 − x) K0.5Na0.5NbO3xLiNbO3 ceramics. Curr. Appl. Phys. (2013). https://doi.org/10.1016/j.cap.2012.09.009

  23. Peña, O., Bahout, M., Gutiérrez, D., Fernández, J.F., Durán, P., Moure, C.: Critical behavior in the perovskite-like system Y(Ni,Mn)O3. J. Phys. Chem. Solids. 61, 2019–2024 (2000). https://doi.org/10.1016/S0022-3697(00)00200-6

    Article  ADS  Google Scholar 

  24. Sinha, R., Basu, S., Meikap, A.K.: Investigation of dielectric and electrical behavior of Mn doped YCrO3 nanoparticles synthesized by the sol gel method. Physica E Low Dimens. Syst. Nanostruct. 69, 47-55 (2015). https://doi.org/10.1016/j.physe.2015.01.010

  25. Shukla, A., Choudhary, R.N.P., Thakur, A.K.: Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic. J. Phys. Chem. Solids. 70, 1401 (2009). https://doi.org/10.1016/j.jpcs.2009.08.015

    Article  ADS  Google Scholar 

  26. Shukla, A., Choudhary, R.N.P.: Impedance and modulus spectroscopy characterization of La+3/Mn+4 modified PbTiO3 nanoceramics. Curr. Appl. Phys. 11, 414 (2011). https://doi.org/10.1016/j.cap.2010.08.014

    Article  ADS  Google Scholar 

  27. Sinha, R., Basu, S., Meikap, A.K.: The investigation of the electrical transport properties of Gd doped YCrO3 nanoparticles. Mater. Res. Bull. 97, 578 (2018). https://doi.org/10.1016/j.materresbull.2017.08.055

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to UGC-DAE-CSR Indore for providing measurement facilities, Dr. M. Gupta for XRD measurement, Dr. V. Sathe for Raman measurement, Dr. D.M. Phase and Mr. Ahire for SEM measurement, and Mr. Bharadwaj for dielectric measurement. We are grateful to MPCST, Bhopal (4836/CST/R&D/Phy & Engg Sc/2014) for the financial assistance. Special thanks to Ms. Mehjabeen Khan, Ms. Supriya Bisen, Mr. Bhargav Pathak, Ms. Prachi Joshi, and Ms. Pallavi Saxena for their constant support and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Shukla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, J., Mishra, A. Influence of Ba2+ Doping on Structural and Electrical Transport Properties of YMnO3 Ceramics. J Supercond Nov Magn 34, 451–459 (2021). https://doi.org/10.1007/s10948-020-05693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05693-x

Keywords

Navigation