Skip to main content

Elastic, Half-Metallicity, Thermodynamic, and Transport Properties of Ru2VGe and Ru2VSb Full-Heusler Compounds: a First-Principle Study

Abstract

The aim of this work is the study of the magnetic, elastic, thermic, and thermoelectric properties of the ternary full-Heusler alloys Ru2VZ (Z = Ge and Sb) in L21 structure, using an ab initio calculation within the linearized augmented plane wave method with a full potential (FP-LAPW) based on the density functional theory (DFT). We computed these properties within the general gradient approximation (GGA). The structural parameters obtained are in favorable agreement with respect to the theoretical values found in the literature. The electronic properties studied have shown that the compounds have a half-metallic behavior. We have also computed the mechanical properties where we found that these full-Heusler compounds are mechanically stable. Furthermore, we have studied the thermal properties by the quasi-harmonic Debye model incorporated in the GIBBS code, which takes into account the lattice vibrations, pressure, and temperature effects on structural parameters. The thermoelectric properties were computed as a function of chemical potential at 300, 600, and 900 K. To our knowledge, the thermodynamic and thermoelectric characteristics have not yet been measured or calculated; hence, our results serve as a prediction for future study. Our obtained results for these quantities make these compounds attractive candidates for materials used in spintronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Google Scholar 

  2. 2.

    Heusler, F., W. Starck, and E. Haupt. "Uber magnetische maganlegierun.": Verh. DPG. 5, 220 (1903)

  3. 3.

    Heusler, F. "Mangan-aluminium-kupferlegierungen." :Verh. DPG. 5, 219 (1903)

  4. 4.

    Coey, J.M.D., Venkatesan, M., Bari, M.A.: In: Berthier, C., et al. (eds.) Half-metallic ferromagnets (lecture notes in physics), vol 595, p. 377. Springer, Berlin (2002)

  5. 5.

    Katsnelson, M.I., Irkhin, V.Y., Chioncel, L., de Groot, R.A.: Rev. Mod. Phys. 80, 315 (2008)

    ADS  Google Scholar 

  6. 6.

    Felser, C., Fecher, G.H., Balke, B.: Angew. Chem. Int. Ed. 46, 668 (2007)

    Google Scholar 

  7. 7.

    Balke, B., Wurmehl, S., Fecher, G.H., Felser, C., Kübler, J.: Sci. Technol. Adv. Mater. 9, 014102 (2008)

    Google Scholar 

  8. 8.

    Graf, T., Felser, C., Parkin, S.S.P.: Prog. Solid State Chem. 39, 1 (2011)

    Google Scholar 

  9. 9.

    Wu, F., Mizukami, S., Watanabe, D., Naganuma, H., Oogane, M., Ando, Y.: Appl. Phys. Lett. 94, 122503 (2009)

    ADS  Google Scholar 

  10. 10.

    Brown, P.J., Neumann, K.U., Webster, P.J., Ziebeck, K.R.A.: J. Phys. Condens. Matter. 12, 1827 (2000)

    ADS  Google Scholar 

  11. 11.

    Umetsu, R.Y., Okubo, A., Xu, X., Kainuma, R.: J. Alloys Compd. 588, 153 (2014)

    Google Scholar 

  12. 12.

    Heusler, O.: Kristallstruktur und Ferromagnetismus der Mangan-Aluminium Kupferlegierungen. Ann. Phys. 19, 155 (1934)

    Google Scholar 

  13. 13.

    Yalcin, B.G.: J. Magn. Magn. Mater. 408, 137 (2016)

    ADS  Google Scholar 

  14. 14.

    Mondal, S., Mazumdar, C., Ranganathan, R.: AIP Conf. Proc. 1512, 978 (2013)

    ADS  Google Scholar 

  15. 15.

    Mondal, S., Mazumdar, C., Ranganathan, R.: AIP Conf. Proc. 1536, 285 (2013)

    Google Scholar 

  16. 16.

    Gupta, D.C., Bhat, I.H.: J. Magn. Magn. Mater. 374, 209 (2015)

    ADS  Google Scholar 

  17. 17.

    Yang, J., Li, H., Wu, T., Zhang, W., Chen, L., Yang, J.: Adv. Funct. Mater. 18, 2888 (2008)

    Google Scholar 

  18. 18.

    Comtesse, D., Geisler, B., Entel, P., Kratzer, P., Szunyogh, L.: Phys. Rev. B. 89, 094410 (2014)

    ADS  Google Scholar 

  19. 19.

    Yadav, M.K., Sanyal, B.: J. Alloys Compd. 622, 388 (2015)

    Google Scholar 

  20. 20.

    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D.J.: “WIEN2K, an augmented plane wave +local orbitals program for calculating crystal properties” (Karlheinz Schwarz, Technische Universität, Wien, Austria, 2001), ISBN 3-9501031 1-2 (2001)

  21. 21.

    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  22. 22.

    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  23. 23.

    Schwarz, K., Blaha, P., Madsen, G.K.H.: Comput. Phys. Commun. 147, 71 (2002)

    ADS  Google Scholar 

  24. 24.

    Perdew, J.P., Wang, Y.: Phys. Rev. B. 45, 13 244 (1992)

    Google Scholar 

  25. 25.

    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  26. 26.

    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  27. 27.

    Robie, R.A., Edwards, J.L.: J. Chem. Phys. 37, 2659 (1966)

    Google Scholar 

  28. 28.

    Blanco, M.A., Francisco, E., Luana, V.: Comput. Phys. Commun. 158, 57 (2004)

    ADS  Google Scholar 

  29. 29.

    Blanco, M.A., Pendás, A.M., Francisco, E., Recio, J.M., Franco, R.: J. Mol. Struct. (THEOCHEM). 368, 245 (1996)

    Google Scholar 

  30. 30.

    Flórez, M., Recio, J.M., Francisco, E., Blanco, M.A., Pendás, A.M.: Phys. Rev. B. 66, 144112 (2002)

    ADS  Google Scholar 

  31. 31.

    Francisco, E., Recio, J.M., Blanco, M.A., Pendás, A.M.: J. Phys. Chem. 102, 1595 (1998)

    Google Scholar 

  32. 32.

    Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)

    ADS  Google Scholar 

  33. 33.

    Murnaghan, F.D.: Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944)

    ADS  Google Scholar 

  34. 34.

    Mizusaki, S., Douzono, A., Ohnishi, T., Nagata, Y.: J. Phys. Conf. Ser. 200(0520), 17 (2010)

    Google Scholar 

  35. 35.

    Yin, M., Nash, P.: J. Alloys Compd. 634, 70 (2015)

    Google Scholar 

  36. 36.

    Gilleßen, M.: PhD thesis, RWTH Aachen University, Aachen, Germany (2009)

  37. 37.

    Mehl, M.J., Klein, B.K., Papaconstantopoulos, D.A.: Intermetallic com- pounds: principle and practice. In: Westbrook, J.H., Fleischeir, R.L. (eds.) Principles, vol. I. Wiley (1995)

  38. 38.

    Voigt, W.: Lehrbush der Kristallphysik. Taubner, Leipzig (1928)

    Google Scholar 

  39. 39.

    Schreiber, E., Anderson, O.L., Soga, N.: Elastic constants and their measurements. McGraw-Hill, New York (1973)

    Google Scholar 

  40. 40.

    Born, M., Huang, K.: Dynamical theory of crystal lattices. Clarendon, Oxford (1956)

    MATH  Google Scholar 

  41. 41.

    Pettifor, D.G.: Mater. Sci. Technol. 8, 345 (1992)

    Google Scholar 

  42. 42.

    Kanchana, V., Vaitheeswaran, G., Ma, Y., Xie, Y., Svane, A., Eriksson, O.: Phys. Rev. B. 80, 125108 (2009)

    ADS  Google Scholar 

  43. 43.

    Haines, J., Léger, J.M., Bocquillon, G.: Annu. Rev. Mater. Res. 31, 1 (2001)

    ADS  Google Scholar 

  44. 44.

    Biskri, Z., Rached, H., Bouchear, M., Rached, D.: J. Mech. Behav. Biomed. Mater. 32, 345 (2014)

    Google Scholar 

  45. 45.

    Kandpal, H.C., Fecher, G.H., Felser, C.: J. Phys. D. 40, 1507 (2007)

    ADS  Google Scholar 

  46. 46.

    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B. 66, 134428 (2002)

    ADS  Google Scholar 

  47. 47.

    Debye, P.: Ann. Phys. 39, 789 (1912)

    Google Scholar 

  48. 48.

    Petit, A.T., Dulong, P.L.: Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  49. 49.

    Seebeck, T.J.: Ueber die Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz, Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin. 1820-1821, 289–346 (1822)

  50. 50.

    Ioffe, A. I. "Energeticheskie osnovi termoelektricheskih battery poluprovodnikov." Academy of Science of the USSR Moscow (1949)

  51. 51.

    He, J., Amsler, M., Xia, Y., Naghavi, S.S., Hegde, V.I., Hao, S., Goedecker, S., Ozoliņš, V.: Phys. Rev. Lett. 117, 046602 (2016)

    ADS  Google Scholar 

Download references

Funding

This work is supported by the Algerian University research project (PRFU) under grant number B00L02UN200120200001 and the General Directorate for Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Bentouaf.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bentouaf, A. Elastic, Half-Metallicity, Thermodynamic, and Transport Properties of Ru2VGe and Ru2VSb Full-Heusler Compounds: a First-Principle Study. J Supercond Nov Magn 34, 157–167 (2021). https://doi.org/10.1007/s10948-020-05692-y

Download citation

Keywords

  • FP-LAPW
  • Heusler compounds
  • GGA
  • Thermodynamic properties
  • Transport properties
  • Spintronics