Skip to main content
Log in

Evolution of Crystal Structure and Magnetic Properties of Y2Zr2−xMnxO7 (x = 0.0, 0.1, 0.2) Family of Pyrochlore Oxides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present article reviews the structural and magnetic properties of Y2Zr2−xMnxO7 compounds with respect to the extent of Mn doping. All the samples are single phase and crystallize in the cubic system with Fd-3m space group. The stability of the pyrochlore structure was established by Rietveld structural refinements. The lattice parameter and cell volume decrease with Mn substitution because of the smaller ionic radius of Mn4+ than Zr4+. The zero field-cooled (ZFC) and field-cooled (FC) curves for Mn-doped samples diverge at low temperature which is possibly due to spin-glass transition. Both the Mn-doped phases exhibit anti-ferromagnetic behavior, which could be due to the presence of super-exchange (SE) Mn4+–O2−–Mn4+ interactions. Moreover, small magnetic hysteresis loops are observed for the Mn-doped phases suggesting the presence of weak ferromagnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chamberlain, S.L., Hess, S.T., Corruccini, L.R.: Dipolar magnetic order in the pyrochlore structure. Phys. Lett. A. 323, 310–314 (2004)

    Article  ADS  Google Scholar 

  2. Raju, N.P., Dion, M., Gingras, M.J.P., Mason, T.E., Greedan, J.E.: Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd2Ti2O7. Phys. Rev. B. 59, 14489–14498 (1999)

    Article  ADS  Google Scholar 

  3. Lian, J., Wang, L.M., Wang, S.X., Chen, J., Boatner, L.A., Ewing, R.C.: Nanoscale manipulation of pyrochlore: new nanocomposite ionic conductors. Phys. Rev. Lett. 87(1–4), 145901 (2001)

    Article  ADS  Google Scholar 

  4. Poulsen, F.W., Glerup, M., Holtappels, P.: Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides. Solid State Ionics. 135, 595–602 (2000)

    Article  Google Scholar 

  5. Wilde, P.J., Catlow, C.R.: Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate. Solid State Ionics. 112, 185–195 (1998)

    Article  Google Scholar 

  6. Dong, X.W., Wang, K.F., Luo, S.J., Wan, J.G., Liu, J.M.: Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7. J. Appl. Phys. 106(1–4), 104101 (2009)

    Article  ADS  Google Scholar 

  7. Mirsaneh, M., Hayden, B.E., Furman, E., Perini, S., Lanagan, M.T., Reaney, I.M.: High dielectric tunability in lead niobate pyrochlore films. Appl. Phys. Lett. 100(1–3), 082901 (2012)

    Article  ADS  Google Scholar 

  8. Wang, S.X., Wang, L.M., Ewing, R.C., Kutty, K.G.: Ion irradiation of rare-earth and yttrium-titanate-pyrochlores. Nucl. Inst. Methods Phys. Res. B. 169, 135–140 (2000)

    Article  ADS  Google Scholar 

  9. Reid, D.P., Stennett, M.C., Hyatt, N.C.: The fluorite related modulated structures of the Gd2(Zr2−xCex)O7 solid solution: an analogue for Pu disposition. J. Solid State Chem. 191, 2–9 (2012)

    Article  ADS  Google Scholar 

  10. Chen, Z.S., Gong, W.P., Chen, T.F., Li, S.L.: Synthesis and characterization of pyrochlore-type yttrium titanate nanoparticles by modified sol–gel method. Bull. Mater. Sci. 34, 429–434 (2011)

    Article  Google Scholar 

  11. Moon, P.K., Tuller, H.L.: Ionic conduction in the Gd2Ti2O7−Gd2Zr2O7 system. Solid State Ionics. 28, 470–474 (1988)

    Article  Google Scholar 

  12. Subramanian, M.A., Aravamudan, G., Rao, G.S.: Oxide pyrochlores—a review. Prog. Solid State Chem. 15, 55–143 (1983)

    Article  Google Scholar 

  13. Wang, J., Nakamura, A., Takeda, M.: Structural properties of the fluorite-and pyrochlore-type compounds in the Gd2O3–ZrO2 system xGdO1.5–(1−x)ZrO2 with 0.18≤ x≤ 0.62. Solid State Ionics. 164, 185–191 (2003)

    Article  Google Scholar 

  14. Mandal, B.P., Garg, N., Sharma, S.M., Tyagi, A.K.: Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (RE= Dy, Ho, Er, Tm, Lu, Y): pyrochlores or defect-fluorite? J. Solid State Chem. 179, 1990–1994 (2006)

    Article  ADS  Google Scholar 

  15. Muromura, T., Hinatsu, Y.: Fluorite type phase in nuclear waste ceramics with high zirconia and alumina contents. J. Nucl. Mater. 151, 55–62 (1987)

    Article  ADS  Google Scholar 

  16. Hayakawa, I., Kamizono, H.: Investigation of waste form materials suitable for immobilizing actinide elements in high-level waste. Mater. Res. Soc. Symp. Proc. 257, 257 (1992)

    Article  Google Scholar 

  17. Mandal, B.P., Tyagi, A.K.: Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2−xNdxZr2O7. J. Alloys Compd. 437, 260–263 (2007)

    Article  Google Scholar 

  18. Shinozaki, K., Miyauchi, M., Kuroda, K., Sakurai, O., Mizutani, N., Kato, M.: Oxygen-ion conduction in the Sm2Zr2O7 pyrochlore phase. J. Am. Ceram. Soc. 62, 538–539 (1979)

    Article  Google Scholar 

  19. Sayed, F.N., Jain, D., Mandal, B.P., Pillai, C.G., Tyagi, A.K.: Tunability of structure from ordered to disordered and its impact on ionic conductivity behavior in the Nd2−yHoyZr2O7 (0.0≤ y ≤2.0) system. RSC Adv. 2, 8341–8351 (2012)

    Article  ADS  Google Scholar 

  20. Lehmann, H., Pietzer, D., Pracht, G., Vassen, R., Stover, D.: Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J. Am. Ceram. Soc. 86, 1338–1344 (2003)

    Article  Google Scholar 

  21. Thampi, D.V., Rao, P.P., Radhakrishnan, A.N.: Influence of Ce substitution on the order-to-disorder structural transition, thermal expansion and electrical properties in Sm2Zr2−xCexO7 system. RSC Adv. 4, 12321–12329 (2014)

    Article  ADS  Google Scholar 

  22. Gao, B., Chen, T., Tam, D.W., Huang, C.L., Sasmal, K., Adroja, D.T., Ye, F., Cao, H., Sala, G., Stone, M.B., Baines, C.: Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2Ce2Zr2O7 pyrochlore. Nat. Phys. 15, 1052–1057 (2019)

    Article  Google Scholar 

  23. Reimers, J.N., Greedan, J.E., Kremer, R.K., Gmelin, E., Subramanian, M.A.: Short-range magnetic ordering in the highly frustrated pyrochlore Y2Mn2O7. Phys. Rev. B. 43, 3387–3394 (1991)

    Article  ADS  Google Scholar 

  24. Kennedy, B.J., Hunter, B.A.: Structural and magnetic studies of manganese-containing pyrochlore oxides. J. Alloys Compd. 302, 94–100 (2000)

    Article  Google Scholar 

  25. Raju, N.P., Greedan, J.E., Subramanian, M.A.: Magnetic, electrical, and small-angle neutron-scattering studies of possible long-range order in the pyrochlores Tl2Mn2O7 and In2Mn2O7. Phys. Rev. B. 49, 1086–1091 (1994)

    Article  ADS  Google Scholar 

  26. Liang, D., Liu, H., Ling, L., Zhang, L., Zhang, C., Zhang, Y.: Magnetic and magnetoelectric properties of hybrid-frustrated Bi2Ir2−xMnxO7 pyrochlores. Solid State Commun. 278, 36–41 (2018)

    Article  ADS  Google Scholar 

  27. Shimakawa, Y., Kubo, Y., Manako, T.: Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure. Nature. 379, 53–55 (1996)

    Article  ADS  Google Scholar 

  28. Kumar, M., Raj, I.A., Pattabiraman, R.: Y2Zr2O7 (YZ)-pyrochlore based oxide as an electrolyte material for intermediate temperature solid oxide fuel cells (ITSOFCs)—influence of Mn addition on YZ. Mater. Chem. Phys. 108, 102–108 (2008)

    Article  Google Scholar 

  29. Jain, S.R., Adiga, K.C., Verneker, V.P.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame. 40, 71–79 (1981)

    Article  Google Scholar 

  30. Bhattachaya, A.K., Hartridge, A., Mallick, K.K., Woodhead, J.L.: Preparation and characterization of Ln2Zr2O7 microspheres by an inorganic sol-gel route. J. Mater. Sci. 29, 6076–6078 (1994)

    Article  ADS  Google Scholar 

  31. Larson, A.C., Von Dreele, R.B.: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR. 86–748 (2004)

  32. Ewing, R.C., Chakoumakos, B.C., Cerny, P.: Granitic Pegmatites in Science and Industry: a Short Course, Mineral Association of Canada 239–265 (1982)

  33. Chakoumakos, B.C.: Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 53, 120–129 (1984)

    Article  ADS  Google Scholar 

  34. Chakoumakos, B.C., Ewing, R.C.: Crystal chemical constraints on the formation of actinide pyrochlores. Mater. Res. Soc. Proc. 44, 641–646 (1984)

    Article  Google Scholar 

  35. Subramanian, M.A., Sleight, A.W.: Rare earth pyrochlores. Handbook on the Physics and Chemistry of Rare Earths 16, 225–248 (1993)

  36. Klug, H.P., Alexander, L.E.: X-ray Diffraction Procedures; for Polycrystalline and Amorphous Materials. Wiley, Toronto (1954)

    Google Scholar 

  37. Feng, Y., Zhu, S., Bian, J., Chen, F., Chen, S., Ma, C., Liu, H., Fang, B.: Magnetic and electrical transport properties of the pyrochlore iridate Bi2-xCoxIr2O7. J. Magn. Magn. Mater. 451, 283–287 (2018)

    Article  ADS  Google Scholar 

  38. Haas, M.K., Cava, R.J., Avdeev, M., Jorgensen, J.D.: Robust paramagnetism in Bi2−xMxRu2O7 (M = Mn, Fe, Co, Ni, Cu) pyrochlore. Phys. Rev. B. 66(1–7), 094429 (2002)

    Article  ADS  Google Scholar 

  39. Kittel, C., McEuen, P.: Introduction to Solid State Physics, pp. 404–406. Wiley, New York (1986)

    Google Scholar 

  40. Singh, D., Mahajan, A.: Effect of A-site cation size on the structural, magnetic, and electrical properties of La1−xNdxMn0.5Cr0.5O3 perovskites. J. Alloys Compd. 644, 172–179 (2015)

    Article  Google Scholar 

  41. Sharma, N.D., Sharma, S., Choudhary, N., Verma, M.K., Singh, D.: Comparative study of La0.5Nd0.2Ca0.3−xKxMnO3 (x= 0.0 and 0.05) nanoparticles: effect of A-cation size and calcination temperature. Ceram. Int. 45, 13637–13646 (2019)

    Article  Google Scholar 

  42. Zhu, X., Edström, A., Ederer, C.: Magnetic exchange interactions in SrMnO3. Phys. Rev. B. 101(1–10), 064401 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are obliged to Director, AMRC, IIT Mandi, for XRD analysis. Special thanks to Prof. R. Chandra, IIC, IIT Roorkee, for SEM and EDX analyses and Director, IISER, Bhopal, for carrying out magnetic measurements.

Funding

CSIR, New Delhi, provided financial assistance, vide Ref. No. 09/100(0189)/2015-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K., Sharma, S., Choudhary, N. et al. Evolution of Crystal Structure and Magnetic Properties of Y2Zr2−xMnxO7 (x = 0.0, 0.1, 0.2) Family of Pyrochlore Oxides. J Supercond Nov Magn 34, 435–441 (2021). https://doi.org/10.1007/s10948-020-05678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05678-w

Keywords

Navigation