Skip to main content
Log in

Spin-Polarized Transport Through Devices of Er Single-Ion Magnets and Its Derivatives

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We will study the spin-polarized transport through devices of single-ion magnets. A device consisted of the scanning tunneling microscopy (STM) Co tip, the single-ion magnet (Cp*) Ln (COT) (Cp* represents pentamethyl pentacadiene; Ln represents ErIII, DyIII, HoIII; COT stands for cyclooctatetraene), and the Au(111) substrate is proposed. We calculate the current curve for the parallel and anti-parallel configurations for the device of Er single-ion magnet, and find that the tunnel magnetoresistance (TMR) changes with bias − 34~24%, which indicates it is promising for the application in magnetic storage. After comparing the currents through devices of (Cp*) Ln (COT) single-ion magnets, we find that Er single-ion magnet has a better rectifying character than Dy and Ho single-ion magnet, but Ho single-ion magnet has an obvious negative differential conductance. By analysis of their transmission spectrums, these properties are well explained. The spin-polarized transport for the derivatives of Er single-ion magnets is also investigated; we find that they have better rectification and negative differential conductance features, and have potential application on multifunctional molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kahn, O.: Molecular magnetism. In: Miller, J.S., Drillon, M. (eds.) Magnetism: Molecules to Materials I-V. VCH, NewYork (1993) Wiley-VCH, Weinheim, 2002–2005

    Google Scholar 

  2. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  3. Bogani, L., Wernsdorfer, W.: Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179 (2008)

    Article  ADS  Google Scholar 

  4. Wernsdorfer, W.: Molecular magnets: chemistry brings qubits together. Nat. Nanotechnol. 4, 145 (2009)

    Article  ADS  Google Scholar 

  5. Stefano, S.: Molecular spintronics. Chem. Soc. Rev. 40, 3336 (2011)

    Article  Google Scholar 

  6. Hendrickson, D.N., et al.: J. Am. Chem. Soc. 110, 8537 (1988)

    Article  Google Scholar 

  7. Gatteschi, D., et al.: Science. 265, 1054 (1994)

    Article  ADS  Google Scholar 

  8. Gatteschi, D., Sessoli, R.: Angew. Chem. Int. Ed. 42, 268 (2003)

    Article  Google Scholar 

  9. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S., Kaizu, Y.: J. Phys. Chem. B. 108, 11265 (2004)

    Article  Google Scholar 

  10. Ishikawa, N.: Polyhedron. 26, 2147 (2007)

    Article  Google Scholar 

  11. Sorace, L., Benellib, C., Gatteschi, D.: Chem. Soc. Rev. 40, 3092 (2011)

    Article  Google Scholar 

  12. Callsen, M., Caciuc, V., et al.: Magnetic hardening induced by nonmagnetic organic molecules. Phys. Rev. Lett. 111, 106805 (2013)

    Article  ADS  Google Scholar 

  13. Dong, Y.J., Wang, X.F., et al.: High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes. Sci. Rep. 4, 06157 (2014)

    Article  Google Scholar 

  14. Hsu, C.H., Chu, Y.H., et al.: Spin-polarized transport through single manganese phthalocyanine molecules on a Co nano island. Phys. Chem. C. 119, 3374 (2015)

    Article  Google Scholar 

  15. Cheng, Z.H., Du, S.X., et al.: High resolution scanning-tunneling-microscopy imaging of individual molecular orbitals by eliminating the effect of surface charge. Surf. Sci. 605, 415 (2011)

    Article  ADS  Google Scholar 

  16. Repp, J., Meyer, G.: Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005)

    Article  ADS  Google Scholar 

  17. Wang, Y.F., Wu, K., et al.: Review article: structures of phthalocyanine molecules on surfaces studied by STM. AIP Adv. 2, 041402 (2012)

    Article  ADS  Google Scholar 

  18. Lis, T.: Acta Crystallogr. Sect. B. 36, 2042 (1980)

    Article  Google Scholar 

  19. Caneschi, A., Gatteschi, D., Sessoli, R., Barra, A.-L., Brunel, L.C., Guillot, M.: J. Am. Chem. Soc. 113, 5873 (1991)

    Article  Google Scholar 

  20. Sessoli, R., Gatteschi, D., Caneschi, A., Novak, M.A.: Nature. 365, 141 (1993)

    Article  ADS  Google Scholar 

  21. Wieghardt, K., Pohl, K., Jibril, I., Huttner, G.: Angew. Chem. 96, 63 (1984)

    Article  Google Scholar 

  22. Angew. Chem. Int. Ed.Engl., 1984, 23: 77

  23. Delfs, C., Gatteschi, D., Pardi, L., Sessoli, R., Wieghardt, K., Hanke, D.: Inorg. Chem. 32, 3099 (1993)

    Article  Google Scholar 

  24. Rinehart, J.D., Long, J.R.: Chem. Sci. 2, 2078 (2011)

    Article  Google Scholar 

  25. Jiang, S.D., Liu, S.S., et al.: Series of lanthanide organometallic single-ion magnets. Inorg. Chem. 51, 3079 (2012)

    Article  Google Scholar 

  26. Meng, Y.S., Wang, C.H., et al.: (Boratabenzene) (cyclooctatetraenyl) lanthanide complexes: a new type of organometallic single-ion magnet. Inorg. Chem. 3, 828 (2016)

    Google Scholar 

  27. Chen, J., Reed, M.A., Rawlett, A.M., et al.: Large on-off ratio and negative differential resistance in a molecular electronic device. Science. 286, 15 (1999)

    Google Scholar 

  28. Zeng, C.G., Wang, H.Q., Wang, B., et al.: Negative differential-resistance involving two C60 molecules. Appl. Phys. Lett. 77, 3595 (2000)

    Article  ADS  Google Scholar 

  29. Lyo, I.-W., Avouris, P.: Science. 245, 1369 (1989)

    Article  ADS  Google Scholar 

Download references

Funding

This study is supported by the National Key R&D Program of China (Grant No. 2018FYA0305804), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Chuan Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Sun, XM. & Wang, ZC. Spin-Polarized Transport Through Devices of Er Single-Ion Magnets and Its Derivatives. J Supercond Nov Magn 33, 3555–3562 (2020). https://doi.org/10.1007/s10948-020-05619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05619-7

Keywords

Navigation