Skip to main content
Log in

Effect of Ho3+ Ion Doping on Thermal, Structural, and Morphological Properties of Co–Ni Ferrite Synthesized by Sol-Gel Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Rare earth Ho3+-substituted Co–Ni ferrites having a chemical formula Co0.6Ni0.4Fe2−xHoxO4 (0.0, 0.025, 0.05, 0.075, and 0.1) were prepared via sol-gel route. The phase formation of these samples was confirmed by the thermogravimetric analysis with differential thermal analysis and X-ray powder diffraction techniques. Rietveld refinement confirms the cubic spinel structure of the prepared samples having space group Fd3− m with presence of secondary phase of α-Fe2O3. The lattice parameter is increased from 8.412 to 8.582 Å with Ho3+ ion concentration in cobalt–nickel ferrite from x = 0 to x = 0.1. The distribution of cations has been studied with the help of X-ray diffraction data and it is found that Ho3+ ions preferred to occupy the octahedral [B] site. The other structural parameters like X-ray density, bulk density, hopping length, and allied parameter are increased with the composition of Ho3+ ions in the Co–Ni ferrite. The morphology of the samples was observed by transmission electron microscopy and scanning electron microscopy showed the nanostructured formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singhal, S., Singh, J., Barthwal, S.K., Chandra, K.: Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1− xNixFe2O4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    ADS  Google Scholar 

  2. Mande, V.K., Bhoyar, D.N., Vyawhare, S.K., Jadhav, K.M.: Effect of Zn2+–Cr3+substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29, 15259–15270 (2018)

    Google Scholar 

  3. Kadam, R.H., Birajdar, A.P., Gaikwad, A.S., Shirsath, S.E.: Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys. J. Nanosci. Nanotechnol. 14, 4101–4107 (2014)

    Google Scholar 

  4. Kadam, R.H., Birajdar, A.P., Alone, S.T., Shirsath, S.E.: Fabrication of Co0.5Ni0.5CrxFe2−xO4 materials via sol–gel method and their characterizations. J. Magn. Magn. Mater. 327, 167–171 (2013)

    ADS  Google Scholar 

  5. Kumar, L., Kumar, P., Narayan, A., Kar, M.: Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3, 8 (2013)

    Google Scholar 

  6. Kadam, A.B., Mande, V.K., Kadam, S.B., Kadam, R.H., Shirsath, S.E., Borade, R.B.: Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites. J. Alloys Compd. 840, 155669 (2020)

    Google Scholar 

  7. Avazpour, L., Shokrollahi, H., Toroghinejad, M.R., Zandi Khajeh, M.A.: Effect of rare earth substitution on magnetic and structural properties of Co1−xRExFe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J. Alloys Copnd. 662, 441–447 (2016)

    Google Scholar 

  8. Rezlescu, N., Rezlescu, E.: The influence of Fe substitution by R ions in a NiZn ferrite. Solid State Commun. 88, 139–141 (1993)

    ADS  Google Scholar 

  9. Kahn, M.L., Zhang, Z.J.: Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions. Appl. Phys. Lett. 78(23), 3651–3653 (2001)

    ADS  Google Scholar 

  10. Shirsath, S.E., Kadam, R.H., Patange, S.M., Mane, M.L., Ghasemi, A., Morisako, A.: Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles. Appl. Phys. Lett. 100(4), 042407 (2012)

    ADS  Google Scholar 

  11. Ahmed, M.A., Ateia, E., Salah, L.M., El-Gamal, A.A.: Structural and electrical studies on La3+ substituted Ni–Zn ferrites. Mater. Chem. Phys. 92(2–3), 310–321 (2005)

    Google Scholar 

  12. Ali, I., Islam, M.U., Ishaque, M., Khan, H.M., Ashiq, M.N., Rana, M.U.: Structural and magnetic properties of holmium substituted cobalt ferrites synthesized by chemical co-precipitation method. J. Magn. Magn. Mater. 324(22), 3773–3777 (2012)

    ADS  Google Scholar 

  13. Bharathi, K.K., Markandeyulu, G., Ramana, C.V.: Structural, magnetic, electrical, and magnetoelectric properties of Sm-and Ho-substituted nickel ferrites. J. Phys. Chem. C. 115(2), 554–560 (2011)

    Google Scholar 

  14. Manzoor, A., Khan, M.A., Shahid, M., Warsi, M.F.: Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J. Alloys Compd. 710, 547–556 (2017)

    Google Scholar 

  15. Verma, A., Goel, T.C., Mendiratta, R.G., Alam, M.I.: Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater. Sci. Eng. B. 60(2), 156–162 (1999)

    Google Scholar 

  16. Komarneni, S., Fregeau, E., Breval, E., Roy, R.: Hydrothermal preparation of ultrafine ferrites and their sintering. J. Am. Ceram. Soc. 71(1), C–26 (1988)

    Google Scholar 

  17. Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G., Sendhilnathan, S.: Effect of zinc substitution on co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    ADS  Google Scholar 

  18. Das, N., Majumdar, R., Sen, A., Maiti, H.S.: Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater. Lett. 61(10), 2100–2104 (2007)

    Google Scholar 

  19. Shirsath, S.E., Wang, D., Jadhav, S.S., Mane, M.L., Li, S.: Ferrites obtained by sol-gel method. In: Klein, L., Aparicio, M., Jitianu, A. (eds.) Handbook of Sol-Gel Science and Technology, pp. 695–735. Springer, Cham (2018)

    Google Scholar 

  20. Mande, V.K., Kounsalye, J.S., Vyawahare, S.K., Jadhav, K.M.: Effect of γ-radiation on structural, morphological, magnetic and dielectric properties of Zn–Cr substituted nickel ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 30, 56–68 (2019)

    Google Scholar 

  21. Yue, Z., Zhou, J., Li, L., Zhang, H., Gui, Z.: Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208(1–2), 55–60 (2000)

    ADS  Google Scholar 

  22. Toksha, B.G., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147(11–12), 479–483 (2008)

    ADS  Google Scholar 

  23. Khan, M.A., Sabir, M., Mahmood, A., Asghar, M., Mahmood, K., Khan, M.A., Ahmad, I., Sher, M., Warsi, M.F.: High frequency dielectric response and magnetic studies of Zn1-xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique. J. Magn. Magn. Mater. 360, 188–192 (2014)

    ADS  Google Scholar 

  24. Arshad, M., Asghar, M., Junaid, M., Warsi, M.F., Rasheed, M.N., Hashim, M., Khan, M.A.: Structural and magnetic properties variation of manganese ferrites via Co-Ni substitution. J. Magn. Magn. Mater. 474, 98–103 (2019)

    ADS  Google Scholar 

  25. Ateia, E., Ahmed, M.A., El-Aziz, A.K.: Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrite. J. Magn. Magn. Mater. 311(2), 545–554 (2007)

    ADS  Google Scholar 

  26. Cheng, F.X., Jia, J.T., Xu, Z.G., Zhou, B., Liao, C.S., Yan, C.H., Zhao, H.B.: Microstructure, magnetic, and magneto-optical properties of chemical synthesized Co–RE (RE= Ho, Er, Tm, Yb, Lu) ferrite nanocrystalline films. J. Appl. Phys. 86(5), 2727–2732 (1999)

    ADS  Google Scholar 

  27. Vinod, T., Shinde, S.S., Borade, R.B., Kadam, A.B.: Study of cation distribution, structural and electrical properties of Al–Zn substituted Ni–Co ferrite. Physica B. 577, 411783 (2020)

    Google Scholar 

  28. Xi, G., Zhao, T., Wang, L., Dun, C., Zhang, Y.: Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries. Physica B. 534, 76–82 (2018)

    ADS  Google Scholar 

  29. Pachpinde, A.M., Langade, M.M., Lohar, K.S., Patange, S.M., Shirsath, S.E.: Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2−xO4 nanoparticles. Chem. Phys. 429, 20–26 (2014)

    Google Scholar 

  30. Borade, R.B., Kadam, S.B., Wagare, D.S., Kadam, R.H., Shirsath, S.E., Nimbore, S.R., Kadam, A.B.: Fabrication of Bi3+ substituted yttrium aluminum iron garnet (YAIG) nanoparticles and their structural, magnetic, optical and electrical investigations. J. Mater. Sci. Mater. Electron. 30, 19782–19791 (2019)

    Google Scholar 

  31. Borade, R.B., Shirsath, S.E., Vats, G., Gaikwad, A.S., Patange, S.M., Kadam, S.B., Kadam, R.H., Kadam, A.B.: Polycrystalline to preferred-(100) single crystal texture phase transformation of yttrium iron garnet nanoparticles. Nanoscale Adv. 1(1), 403–413 (2019)

    ADS  Google Scholar 

  32. Han, Y., Sun, A., Pan, X., Zhang, W., Zhao, X.: Effect of different sintering temperatures on Structuraland magnetic properties of Zn–Co ferrite nanoparticles. J. Supercond. Nov. Magn. 32, 3823–3830 (2019)

    Google Scholar 

  33. Maksoud, M.I.A.A., El-Sayyad, G.S., Ashour, A.H., El-Batal, A.I., Elsayed, M.A., Gobara, M., El-Khawaga, A.M., Abdel-Khalek, E.K., El-Okr, M.M.: Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    Google Scholar 

  34. Zhao, X., Sun, A., Zhang, W., Han, Y., Pan, X.: Effects of mg substitution on the structural and magnetic properties of Ni0.2MgxCo0.8−xFe2O4 nanoparticle ferrites. J. Supercond. Nov. Magn. 32, 2589–2598 (2019)

    Google Scholar 

  35. Shahane, G.S., Zipare, K.V., Bandgar, S.S., Mathe, V.L.: Cation distribution and magnetic properties of Zn2+ substituted MnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 4146–4153 (2017)

    Google Scholar 

  36. Cullity, B.D.: Elements of X-Ray Diffraction. Addison-Wesley Publishing (1956)

  37. Kumar, L., Kumar, P., Kuncser, V., Greculeasa, S., Sahoo, B., Kar, M.: Strain induced magnetism and superexchange interaction in Cr substituted nanocrystalline cobalt ferrite. Mater. Chem. Phys. 211, 54–64 (2018)

    Google Scholar 

  38. Routray, K.L., Saha, S., Behera, D.: Rare-earth (La3+) substitution induced changes in the structural, dielectric and magnetic properties of nano-CoFe2O4 for high-frequency and magneto-recording devices. Appl. Phys. A. 125, 328 (2019)

    ADS  Google Scholar 

  39. Sharma, R., Thakur, P., Sharma, P., Sharma, V.: Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Copnd. 704, 7–17 (2017)

    Google Scholar 

  40. Al Maashani, M.S., Khalaf, K.A., Gismelseed, A.M., Al-Omari, I.A.: The structural and magnetic properties of the nano-CoFe2O4 ferrite prepared by sol-gel auto-combustion technique. J. Alloys Compd. 817, 152786 (2020)

    Google Scholar 

  41. Al-Hilli, M.F., Li, S., Kassim, K.S.: Gadolinium substitution and sintering temperature dependent electronic properties of Li–Ni ferrite. Mater. Chem. Phys. 128(1–2), 127–132 (2011)

    Google Scholar 

  42. Shirsath, S.E., Kadam, R.H., Mane, M.l., Ghasemi, A., Yasukawa, Y., Liu, X., Morisako, A.: Permeability and magnetic interactions in Co2+ substituted Li0.5Fe2.5O4. J. Alloys Compd. 575, 145–151 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kadam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phugate, D.V., Borade, R.B., Kadam, S.B. et al. Effect of Ho3+ Ion Doping on Thermal, Structural, and Morphological Properties of Co–Ni Ferrite Synthesized by Sol-Gel Method. J Supercond Nov Magn 33, 3545–3554 (2020). https://doi.org/10.1007/s10948-020-05616-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05616-w

Keywords

Navigation