Skip to main content
Log in

First-Principle Study of Structural, Elastic, Electronic and Magnetic Properties of the Quaternary Heusler CoZrFeP

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Many studies nowadays are available to predict the half-metallic behaviour of Heusler’s quaternary compounds. Using the first principle study of the quaternary Heusler CoZrFeP, we examined its structural, electronic and magnetic properties with the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) and the generalized modified potential plus Becke-Johnson approximation (GGA-mBJ). Our quaternary Heusler CoZrFeP compound has shown a half-metallic ferromagnetism character with a small band gap in the minority spin which makes it an excellent candidate for the development of new devices in spintronic and magnetoelectronic. In order to know whether our Heusler quaternary CoZrFeP compound can be experimentally synthesized, we studied its mechanical stability by calculating its formation energy, cohesion energy and elastic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50(25), 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  ADS  Google Scholar 

  2. Felser, C., Fecher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. Eng. 46, 668 (2007). https://doi.org/10.1002/anie.200601815

    Article  Google Scholar 

  3. Kübler, J., Williams, A.R., Sommers, C.B.: Phys. Rev. B. 28, 1745 (1983). https://doi.org/10.1103/PhysRevB.28.1745

    Article  ADS  Google Scholar 

  4. Oogane, M., Sakuraba, Y., Nakata, J., Kubota, H., Ando, Y., Sakuma, A., Miyazaki, T.: Large tunnel magnetoresistance in magnetic tunnel junctions using Co 2 MnX (X = Al, Si) Heusler alloys. J. Phys. D. Appl. Phys. 39(5), 834 (2006) http://stacks.iop.org/0022-3727/39/i=5/a=S09

    Article  ADS  Google Scholar 

  5. Galanakis, I., zdoan, K., E. Å a Å olu: A proposal for an alternative class of spin filter materials: hybridization-induced high-tc ferromagnetic semiconductors CoVXAl (X = Ti, Zr, Hf). Appl. Phys. Lett. 103(14), 142–404 (2013). https://doi.org/10.1063/1.4823820

    Article  Google Scholar 

  6. Kundu, A., Ghosh, S., Banerjee, R., Ghosh, S., Sanyal, B.: New quaternary half-metallic ferromagnets with large Curie temperatures. Sci. Rep. 7, 1803 (2017). https://doi.org/10.1038/s41598-017-01782-5

    Article  ADS  Google Scholar 

  7. Alijani, V., et al.: Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z = Al, Ga, Si, Ge). Phys. Rev. B. 84, 224416 (2011). https://doi.org/10.1103/PhysRevB.84.224416

    Article  ADS  Google Scholar 

  8. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., Vn Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into adiffusive semiconductor. Phys. Rev. B. 62(8), R4790–R4793 (2000). https://doi.org/10.1103/PhysRevB.62.R4790

    Article  ADS  Google Scholar 

  9. Xu, G.Z., Liu, E.K., Du, Y., Li, G.J., Liu, G.D., Wang, W.H., Wu, G.H.: A new spin gapless semiconductors family: quaternary Heusler compounds. Europhys. Lett. 102, 17007 (2013). https://doi.org/10.1209/0295-5075/102/17007

    Article  ADS  Google Scholar 

  10. Dai, X., Liu, G., Fecher, G.H., Felser, C., Li, Y., Liu, H.: New quarternary half metallic material CoFeMnSi. J. Appl. Phys. 105, 07E901 (2009). https://doi.org/10.1063/1.3062812

    Article  Google Scholar 

  11. Graf, T., Felser, C., Parkin, S.S.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39(1), 1–50 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

    Article  Google Scholar 

  12. Graf, T., Parkin, S.S.P., Felser, C.: Heusler compounds a material class with exceptional properties. IEEE Trans. Magn. 47(2), 367–373 (2011). https://doi.org/10.1109/TMAG.2010.2096229

    Article  ADS  Google Scholar 

  13. Jansen, H.J.F., Freeman, A.J.: Total-energy full-potential linearized augmented-plane-wave method for bulk solids: electronic and structural properties of tungsten. Phys. Rev. B. 30, 561 (1984). https://doi.org/10.1103/PhysRevB.30.561

    Article  ADS  Google Scholar 

  14. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  16. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 466, 671 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  Google Scholar 

  17. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226,401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  Google Scholar 

  18. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Hvasnicka, J.Luitz. WIEN2k, an augmented plane wave local orbitals program for calculating crystal properties. Austria: KarlHeinz Schwarz, TechnischeUniversität Wien, ISBN 3- 9501031-1-2; 2001

  19. Schwarz, K., Blaha, P.: Solid state calculations using wien2k. Comput. Mater. Sci. 28(2), 259–273 (2003). https://doi.org/10.1016/S0927-0256(03)00112-5

    Article  Google Scholar 

  20. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bahramian, S., Ahmadian, F.: Half-metallicity and magnetism of quaternary Heusler compounds CoRuTiZ (Z=Si, Ge, and Sn). J. Magn. Man. Mater. 424, 122–129 (2017). https://doi.org/10.1016/j.jmmm.2016.10.020

    Article  ADS  Google Scholar 

  22. Khodami, M., Ahmadian, F., Ahmadian, F., Ahmadian, F.: First-principles study of magnetism and half-metallic properties for the quaternary Heusler alloys CoMnTiZ (Z = P, As, and Sb). J. Supercond. Nov. Magn. 28, 3027–3035 (2015). https://doi.org/10.1007/s10948-015-3126-2

    Article  Google Scholar 

  23. Zhao, J.S., Gao, Q., Li, L., Xie, H.H., Hu, X.R., Xu, C.L., Deng, J.B.: First-principles study of the structure, electronic, magnetic and elastic properties of half-Heusler compounds LiXGe (X = Ca, Sr and Ba). Intermetallics. 89, 65–73 (2017). https://doi.org/10.1016/j.intermet.2017.04.011

    Article  Google Scholar 

  24. Wang, X., Cheng, Z., Wang, J., Liu, G.: A full spectrum of spintronic properties demonstrated by a C1b-type Heusler compound Mn2Sn subjected to strain engineering. J. Mater. Chem. C. 4, 8535–8544 (2016). https://doi.org/10.1039/C6TC02526A

    Article  Google Scholar 

  25. Fine, M., Brown, L., Marcus, H.: Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951–956 (1984). https://doi.org/10.1016/0036-9748(84)90267-9

    Article  Google Scholar 

  26. Sin’ko, G.V., Smirnov, N.A.: Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys. Condens. Matter. 14, 6989–7005 (2002). https://doi.org/10.1088/0953-8984/14/29/301

    Article  ADS  Google Scholar 

  27. Ramesh, P., Zhu, J.: First-principles study of the structural, electronic, magnetic, elastic and optical properties of CoFeZrSi1−xGex(x=0.00, 0.25, 0.50, 0.75, 1.00). In.t J. Mod. Phys B. 33, 1950158 (2019). https://doi.org/10.1142/S0217979219501583

    Article  Google Scholar 

  28. Hoat, D.M.: Investigation on new equiatomic quaternary Heusler compound CoCrIrSi via FP-LAPW calculations. Chem. Phys. 523, (2019). https://doi.org/10.1016/j.chemphys.2019.04.009

  29. Huang, H.M., Jiang, Z.-Y., Yong-Jin, Li, H.W.: Effect of coulomb interaction on the electronic properties of bulk and surface of quaternary heusler CoCrScBi. Solid State Sci. 97, 106018. https://doi.org/10.1016/j.solidstatesciences.2019.106018

  30. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin. Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  31. Frantsevich, I.N., Voronov, F.F., Bakuta, S.A.: Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Handbook. NaukovaDumka, Kiev (1982)

    Google Scholar 

  32. Slater, J.C.: The ferromagnetism of nickel. II. Temperature effects. Phys. Rev. 49, 931–937 (1936). https://doi.org/10.1103/PhysRev.49.931

    Article  ADS  Google Scholar 

  33. Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899–904 (1938)

    Article  ADS  Google Scholar 

  34. Guo, R.K., Liu, G.D., Lin, T.T., Wang, W., Wang, L.Y., Dai, X.F.: The electronic, structural and magnetic properties of Heusler compounds ZrCrCoZ (Z=B, Al, Ga, In): a first-principles study. Solid State Commun. 270, 111–118 (2018). https://doi.org/10.1016/j.ssc.2017.11.014

    Article  ADS  Google Scholar 

  35. Berri, S., Ibrir, M., Maouche, D., Attallah, M.: Robust half-metallic ferromagnet of quaternary Heusler compounds ZrCoTiZ (Z = Si, Ge, Ga and Al). Comput. Mater. Sci. 1, 26–31 (2014). https://doi.org/10.1016/j.cocom.2014.10.003

    Article  Google Scholar 

  36. Xie, H.H., Gao, Q., Li, L., Lei, G., Mao, G.Y., Hu, X.R., Deng, J.B.: First-principles study of four quaternary Heusler alloys ZrMnVZ and ZrCoFeZ (Z = Si, Ge). Comput. Mater. Sci. 103, 52–55 (2015). https://doi.org/10.1016/j.commatsci.2015.03.010

    Article  Google Scholar 

  37. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behaviour and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 66, 174–429 (2002). https://doi.org/10.1103/PhysRevB.66.174429

    Article  Google Scholar 

  38. Skaftouros, S., Özdogan, K., Sasioglu, E., Galanakis, I.: Generalized Slater – Pauling rule for the inverse Heusler compounds. Phys. Rev. B. 87(2), 024420 (2013). https://doi.org/10.1103/PhysRevB.87.024420

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souheil Belbachir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belbachir, S., Abbes, C., Belkaid, M.N. et al. First-Principle Study of Structural, Elastic, Electronic and Magnetic Properties of the Quaternary Heusler CoZrFeP. J Supercond Nov Magn 33, 2899–2905 (2020). https://doi.org/10.1007/s10948-020-05598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05598-9

Keywords

Navigation