Skip to main content
Log in

Temperature-Dependent Dielectric and Magnetic Properties of Scandium-Substituted HoFeO3 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, the HoFeO3 and HoFe0.8Sc0.2O3 nanoparticles prepared by the solution combustion method have been studied to understand their structural, dielectric, and magnetic properties. The refined X-ray diffraction pattern (XRD) confirms the single-phase formation with orthorhombic structure having space group Pbnm (D2h16). The average crystallite size observed in nanometer for both samples and field emission-scanning electron microscopy (FE-SEM) confirms that the grain sizes were about in the region of micrometer. The temperature-dependent dielectric parameters were obtained such as the real part of the dielectric constant, dielectric loss tangent, and AC conductivity studied with frequency. The real part of the dielectric constant is high at lower frequencies and it is constant at higher frequency region. This sort of dielectric behavior can additionally be clarified based on various polarization mechanisms happening in various frequency ranges. The dielectric loss tangent increases with temperature. For both samples, the AC conductivity increases with temperature and frequency. The magnetic transitions and magnetic parameters were studied through the temperature-dependent susceptibility and field-dependent magnetization. For HoFeO3 and HoFe0.8Sc0.2O3, the Neel temperature transition at 5 and 8 K was observed which is characterized to the antiferromagnetic nature. The M-H loop confirms the antiferromagnetic nature at 5 K for HoFeO3 and the ferromagnetic nature at 5 K for HoFe0.8Sc0.2O3. Overall, it confirms the changes of nature from antiferromagnetic nature to ferromagnetic nature after substitution of Sc3+ on HoFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Didosyan, Y.S., Hauser, H., Wolfmayer, H., Nicolics, J., Fulmek, P.: Sens. Actuators A. 106, 168–171 (2003)

    Google Scholar 

  2. Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Martins Filho, W.L., Berquo, T.S.: Chem. Mater. 16, 1906–1913 (2004)

    Google Scholar 

  3. Schmool, D.S., Keller, N., Guyot, M., Krishnan, R., Tessier, M.: J. Magn. Magn. Mater. 195, 291–298 (1999)

    ADS  Google Scholar 

  4. Cashion, J.D., Cooke, A.H., Hawkes, J.F.B., Leask, M.J.M., Thorp, T.L., Wells, M.R.: J. Appl. Phys. 39, 1300 (1968)

    Google Scholar 

  5. Cashion, J.D., Cooke, A.H., Leask, M.J.M., Thorp, T.L., Wells, M.R.: J. Mater. Sci. 3, 402 (1968)

    ADS  Google Scholar 

  6. Heck, I.C.: Magnetic materials and their applications, p. 645. Butterworths, London (1974)

    Google Scholar 

  7. Lybutin, I.S., Dmitreiva, T.V., Stepin, A.S.: J. Exp. Theor. Phys. 88, 590 (1990)

    ADS  Google Scholar 

  8. Craik, D.J., Tebble, R.J.: Ferromagnetism and ferromagnetic domains. North Holland Publishing, Amsterdam (1965)

    Google Scholar 

  9. Choudhary, R.J., Kumar, R., Srivastava, J.P., Patil, S.I., Arora, S.K., Shvets, I.V.: Appl. Phys. Lett. 87, 132104 (2005)

    ADS  Google Scholar 

  10. Kumar, R., Choudhary, R.J., Ikram, M., Shukla, D.K., Mollah, S., Thakur, P., Chae, K.H., Angadi, B., Choi, W.K.: J. Appl. Phys. 102, 033703 (2007)

    Google Scholar 

  11. Visnovsky, S., Wanklyn, B.M., Prosser, V.: IEEE Trans. Magn. 20, 1054–1056 (1984)

    ADS  Google Scholar 

  12. Mir, F.A., Sharma, S.K.: Ravi Kumar. Chin. Phys. B. 23, 048101 (2014)

    ADS  Google Scholar 

  13. Eibschütz, M., Shtrikman, S., Treves, D.: Phys. Rev. 156, 562–577 (1967)

    ADS  Google Scholar 

  14. Koehler, W.C., Wollan, E.O., Wilkinson, M.K.: Phys. Rev. 118, 58–70 (1960)

    ADS  Google Scholar 

  15. Zheng, W.J., Liu, R.H., Peng, D.K., Meng, G.Y.: Mater. Lett. 43, 19–22 (2000)

    Google Scholar 

  16. Ming, Q., Nersesyan, M.D., Wagner, A., Ritchie, J., Richardson, J.T., Luss, D., Jacobson, A.J., Yang, Y.L.: Solid State Ionics. 122, 113–121 (1999)

    Google Scholar 

  17. Jagadeesha Angadi, V., Lakshmiprasanna, H.R., Manjunatha, K.: Investigation of structural, microstructural, dielectrical and magnetic properties of Bi3+ doped manganese spinel ferrite nanoparticles for photonic applications, Bismuth - Fundamentals and Photonic Applications. Intech Open (2020), ISBN: 978–1–83968-243-8). https://doi.org/10.5772/intechopen.92430

  18. Pal, M., Chakravorty, D.: Phys. E. 5, 200–203 (2000)

    Google Scholar 

  19. Routray, K.L., Saha, S., Behera, D.: Phys. Status Solidi B. 256, 1800676 (2019)

    ADS  Google Scholar 

  20. Manjunatha, K., Sathish, I.C., Kubrin, S.P., Kozakov, A.T., Lastovina, T.A., Nikolskii, A.V., Srinivasamurthy, K.M.: Mehaboob Pasha, V. Jagadeesha Angadi. J. Mater. Sci. Mater. Electron. 30, 10162–10171 (2019)

    Google Scholar 

  21. Lakshmiprasanna, H.R., Jagadeesha Angadi, V., Babu, B.R., Pasha, M., Manjunatha, K., Matteppanavar, S.: Chem. Dat. Coll. 24, 100273 (2019)

    Google Scholar 

  22. Mareschal, J., Sivardiere, J.: J. Phys. (Paris). 30, 967–973 (1969)

    Google Scholar 

  23. Kotnana, G., Jammalamadaka, S.N.: J. Magn. Magn. Mater. 418, 81–85 (2016)

    ADS  Google Scholar 

  24. Yuan, S., Yang, Y., Cao, Y., Wu, A., Lu, B., Cao, S., Zhang, J.: Solid State Commun. 188, 19–22 (2014)

    ADS  Google Scholar 

  25. Jagdeesha Angadi, V., Choudhury, L., Sadhana, K., Liu, H.-L., Sandhya, R., Matteppanavar, S., Rudraswamy, B., Pattar, V., Anavekar, R.V., Praveena, K.: J. Magn. Magn. Mater. 424, 1–11 (2017)

    ADS  Google Scholar 

  26. Manjunatha, K., Jagadeesha Angadi, V., Ribeiro, R.A.P., Longo, E., Oliveira, M.C., Bomio, M.R.D., de Lazaro, S.R., Matteppanavar, S., Rayaprol, S., Babu, P.D., Pasha, M.: J. Magn. Magn. Mater. 502, 166595 (2020)

    Google Scholar 

  27. Jagadeesha Angadi, V., Manjunatha, K., Kubrin, S.P., Kozakov, A.T., Kochur, A.G., Nikolskii, A.V., Petrov, I.D., Shevtsova, S.I., Ayachit, N.H.: J. Alloy Compd. 842, 155805 (2020)

    Google Scholar 

  28. Bharamagoudar, R., Matteppanavar, S., Patil, A.S., Pattar, V., Angadi, J., Manjunatha, K.: Chem. Dat. Coll. 24, 100288 (2019)

    Google Scholar 

  29. Manjunatha, K., Srininivasamurthy, K.M., Naveen, C.S., Ravikiran, Y.T., Sitalo, E.I., Kubrin, S.P., Matteppanavar, S., Reddy, N.S., Angadi, V.J.: J. Mater. Sci. Mater. Electron. 30, 17202–17217 (2019)

    Google Scholar 

  30. Hench, L.L., West, J.K.: Principles of electronic ceramics, p. 189. Wiley, New York (1990)

    Google Scholar 

  31. Habib, Z., Ikram, M., Majid, K., Asokan, K.: Appl. Phys. A Mater. Sci. Process. 116, 1327–1335 (2014)

    ADS  Google Scholar 

  32. Madare, M.A., Salvi, S.V.: Indian J. Phys. 75A, 363 (2001)

    Google Scholar 

  33. Rezlesecu, N., Rezlescu, E.: Phys. Status Solidi A. 23, 575 (1974)

    ADS  Google Scholar 

  34. Srinivasamurthy, K.M., Manjunatha, K., Sitalo, E.I., Kubrin, S.P., Sathish, I.C., Matteppanavar, S., Rudraswamy, B., Angadi, V.J.: Indian J. Phys. 65, 1–12 (2019)

    Google Scholar 

  35. Adler, D.: In: Seitz, F., Turnbull, D., Ehrenreich, H. (eds.) Solid State Physics, vol. 21, p. 1. Academic Press, New York (1968)

    Google Scholar 

  36. Appel, J.: In: Seitz, F., Turnbull, D., Ehrenreich, H. (eds.) Solid State Physics, vol. 21, p. 193. Academic Press, New York (1968)

    Google Scholar 

  37. Austin, I.G., Mott, N.F.: Adv. Phys. 18, 41 (1969)

    ADS  Google Scholar 

  38. I.C. Sathisha, K. Manjunatha, V. Jagadeesha Angadi, B. Chethan, Y.T. Ravikiran, Vinayaka K. Pattar, S.O. Manjunatha and Shidaling Matteppanavar, Enhanced humidity sensing response in Eu3+-doped iron-rich CuFe2O4: a detailed study of structural, microstructural, sensing, and dielectric properties, Mineralogy - Significance and Applications, Ali Ismail Al-Juboury, IntechOpen (2020), ISBN: 978-1-78985-826-6. DOI: https://doi.org/10.5772/intechopen.90880

  39. Manjunatha, K., Jagadeesha Angadi, V., Srinivasamurthy, K.M., Matteppanavar, S., Pattar, V.K., Pasha, U.M.: J. Supercond. Novel Magn. 71, 1–12 (2020)

    Google Scholar 

  40. Constantini, J.M., Salvetat, J.P., Brisard, F.: J. Appl. Phys. 82(10), 5063 (1997)

    ADS  Google Scholar 

  41. Khalid, S., Ikram, M., K.: Asokan. Vacuum. 99, 251–258 (2014)

    ADS  Google Scholar 

  42. Constantini, J.M., Desvignes, J.M., Toulemonde, M.: J. Appl. Phys. 87(9), 4164 (2000)

    ADS  Google Scholar 

  43. Chatterji, T., Meven, M., Brown, P.J.: AIP Adv. 7, 045106 (2017)

    ADS  Google Scholar 

  44. Walling, J.C., White, R.L.: Phys. Rev. B. 10, 4737–4747 (1974)

    ADS  Google Scholar 

  45. Shao, M., Cao, S., Wang, Y., Yuan, S., Kang, B., Zhang, J., Wu, A., Xu, J.: J. Cryst. Growth. 318, 947–950 (2011)

    ADS  Google Scholar 

  46. Pauthenet, R.: J. Appl. Phys. 29, 253 (1958)

    ADS  Google Scholar 

  47. White, J., Sinha, K., Xu, X.: J. Appl. Phys. 125, 244101 (2019)

    ADS  Google Scholar 

  48. Abhishek, M., Manjunatha, K., Jagadeesha Angadi, V., Melagiriyappa, E., Anandaram, B.N., Jayanna, H.S., Veena, M., Swaroop Acharya, K.: Chem. Dat. Coll. 28, 100460 (2020)

    Google Scholar 

  49. Manjunatha, K., Jagadeesha Angadi, V., Rajaramakrishna, R., Mahaboob Pasha, U.: J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05549-4

  50. Maiti, R., Basu, S., Chakravorty, D.: J. Magn. Magn. Mater. 321, 3274–3277 (2009)

    ADS  Google Scholar 

  51. Seehra, M.S., Punnoose, A.: Solid State Commun. 128, 299–302 (2003)

    ADS  Google Scholar 

  52. Bedekar, V., Jayakumar, O.D., Manjunna, J., Tyagi, A.K.: Matter. Lett. 62, 3793–3795 (2008)

    Google Scholar 

  53. Jiang, L., Liu, W., Wu, A., Xu, J., Liu, Q., Qian, G., Zhang, H.: Ceram. Int. 38, 3667–3672 (2012)

    Google Scholar 

  54. Ueda, K., Tabata, H., Kawai, T.: Appl. Phys. Lett. 75, 555 (1999)

    ADS  Google Scholar 

Download references

Funding

The author Dr. Jagadeesha Angadi V is thankful to the UGC DAE CSR Kolkata Centre for the financial support received through Collaborative Research project no: UGC-DAE-CSR-KC/CSR/MS04/0937. Research was partially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, Southern Federal University, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jagadeesha Angadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angadi, V.J., Manjunatha, K., Akyol, M. et al. Temperature-Dependent Dielectric and Magnetic Properties of Scandium-Substituted HoFeO3 Nanoparticles. J Supercond Nov Magn 33, 3525–3534 (2020). https://doi.org/10.1007/s10948-020-05597-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05597-w

Keywords

Navigation