Skip to main content
Log in

Characterization of the Equiatomic Quaternary Heusler Alloy ZnCdRhMn: Structural, Electronic, and Magnetic Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this manuscript, we study the structural, electronic, and magnetic properties of the equiatomic quaternary Heusler alloy ZnCdRhMn in the framework of the first-principle calculations and Monte Carlo simulations. In fact, we have investigated the structural, the magnetic, and the electronic properties of the Zn-based equiatomic quaternary Heusler alloy ZnCdRhMn using the ab initio method in the bases on the GGA approximation. On the other hand, the critical behavior of the equiatomic quaternary Heusler alloy ZnCdRhMn has been outlined by the Monte Carlo simulations. For this end, we apply the Metropolis algorithm. The objective of this work is to improve the competition between the austenitic and martensitic phases on the existence of magnetic and electronic properties of this alloy. The half-metallic behavior is only improved for the austenitic structure and 100% of spin polarization has been found. Moreover, a high curie temperature is found for this alloy for the austenitic phase. We can conclude that the austenitic structure of this alloy is useful for the spintronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chappert, C., Fert, A., Dau, F.N.V.: The emergence of spin electronics in data. Nat. Mater. 6(11), 813–823 (2007 Nov). https://doi.org/10.1038/nmat2024

    Article  ADS  Google Scholar 

  2. Felser, C., Fecher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668 (2007)

    Google Scholar 

  3. Inomata, K., Ikeda, N., Tezuka, N., Goto, R., Sugimoto, S., Wojcik, M., Jedryka, E.: Highly spin polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9, 014101 (2008)

    Google Scholar 

  4. Varaprasad, B.S.D.C.S., Srinivasan, A., Takahashi, Y.K., Hayashi, M., Rajanikanth, A., Hono, K.: Spin polarization and Gilbert damping of Co2Fe (-GaxGe1-x) Heusler alloys. Acta Mater. 60, 6257 (2012)

    Google Scholar 

  5. Bainsla, L., Suresh, K.G., Nigam, A.K., Manivel Raja, M., Varaprasad, B.S.D.C.S., Takahashi, Y.K., Hono, K.: High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy. J. Appl. Phys. 116, 203902 (2014)

    ADS  Google Scholar 

  6. Lakhan, B., Mallick, A.I., Coelho, A.A., Nigam, A.K., Varaprasad, B.S.D.C.S., Takahashi, Y.K., Alam, A., Suresh, K.G., Hono, K.: High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy. J. Magn. Magn. Mater. 394, 82 (2015)

    ADS  Google Scholar 

  7. Nakatani, T.M., Rajanikanth, A., Gercsi, Z., Takahashi, Y.K., Inomata, K., Hono, K.: Structure, magnetic property, and spin polarization of Co2FeAlxSi1_x Heusler alloys. J. Appl. Phys. 102, 033916 (2007)

    ADS  Google Scholar 

  8. Kubota, T., Tsunegi, S., Oogane, M., Mizukami, S., Miyazaki, T., Naganuma, H., Ando, Y.: Half-metallicity and Gilbert damping constant in Co2FexMn1_xSi Heusler alloys depending on the film composition. Appl. Phys. Lett. 94, 122504 (2009)

    ADS  Google Scholar 

  9. Sakuraba, Y., Ueda, M., Miura, Y., Sato, K., Bosu, S., Saito, K., Shirai, M., Konno, T.J., Takanashi, K.: Extensive study of giant magnetoresistance properties in half metallic Co2 (Fe, Mn)Si-based devices. Appl. Phys. Lett. 101, 252408 (2012)

    ADS  Google Scholar 

  10. Li, S., Takahashi, Y.K., Furubayashi, T., Hono, K.: Enhancement of giant magneto-resistance by L21 ordering in Co2Fe(Ge0.5Ga0.5) Heusler alloy current perpendicular-to-plane pseudo spin valves. Appl. Phys. Lett. 103, 042405 (2013)

    ADS  Google Scholar 

  11. Bainsla, L., Mallick, A.I., Manivel Raja, M., Nigam, A.K., Varaprasad, B.S.D.C.S., Takahashi, Y.K., Alam, A., Suresh, K.G., Hono, K.: Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy. Phys. Rev. B. 91, 104408 (2015)

    ADS  Google Scholar 

  12. Bainsla, L., Mallick, A.I., Manivel Raja, M., Coelho, A.A., Nigam, A.K., Alam, A., Suresh, K.G.: Origin of spin gapless semiconductor behavior in CoFeCrGa. Phys. Rev. B. 92, 045201 (2015)

    ADS  Google Scholar 

  13. Heusler, F., Starck, W., Haupt, E.: magnetisch-chemische Studien, Verh. Der Deutschen Physikalische Gesellschaft. 5, 219 (1903)

    Google Scholar 

  14. Wang, X., Cheng, Z., Wang, J., Wang, X.-L., Liu, G.: J. Mater. Chem. C. 4, 7176 (2016)

    Google Scholar 

  15. Gao, Y.C., Zhang, Y., Wang, X.T.: J. Korean Phys. Soc. 66, 959 (2015)

    ADS  Google Scholar 

  16. Benkaddour, K., Chahed, A., Amar, A., Rozale, H., Lakdja, A., Benhelal, O., Sayede, A.: J. Alloys Compd. 687, 211 (2016)

    Google Scholar 

  17. Du, J., Dong, S., Lu, Y.-L., Zhao, H., Feng, L., Wang, L.Y.: J. Magn. Magn. Mater. 428, 250 (2017)

    ADS  Google Scholar 

  18. Wang, Y., Zhang, X., Ding, B., Hou, Z., Liu, E., Liu, Z., Xia, X., Zhang, H., Wu, G., Wang, W.: Comput. Mater. Sci. 150, 321–324 (2018)

    Google Scholar 

  19. Goripati, H.S., Furubayashi, T., Takahashi, Y.K., Hono, K.: J. Appl. Phys. 113, 043901 (2013)

    ADS  Google Scholar 

  20. Bainsla, L., Suresh, K.G.: Appl. Phys. Rev. 3, 031101 (2016)

    ADS  Google Scholar 

  21. Feng, Y., Chen, X., Zhou, T., Yuan, H., Chen, H.: Appl. Surf. E Sci. 346, 1–10 (2015)

    ADS  Google Scholar 

  22. Zhang, L., Wang, X., Cheng, Z.: J. Alloys Compd. 718, 63 (2017)

    Google Scholar 

  23. Idrissi, S., Khalladi, R., Ziti, S., El Mekkaouia, N., Mtougui, S., Labrim, H., El Housni, I., Bahmad, L.: Phys. B Condens. Matter. 562, 116–123 (2019)

    ADS  Google Scholar 

  24. Graf, T., Felser, C., Parkin, S.S.: Prog. Solid State Chem. 39, 1 (2011)

    Google Scholar 

  25. Dai, X., Liu, G., Fecher, G.H., Felser, C., Li, Y., Liu, H.: J. Appl. Phys. 105, 07E901 (2009)

    Google Scholar 

  26. Alijani, V., Ouardi, S., Fecher, G.H., Winterlik, J., Naghavi, S.S., Kozina, X., Ueda, S.: Phys. Rev. B. 84, 224416 (2011)

    ADS  Google Scholar 

  27. Bahramian, S., Ahmadian, F.: Half-metallicity and magnetism of quaternary Heusler compounds CoRuTiZ (Z=Si, Ge, and Sn). J. Magn. Magn. Mater. 424, (2016). https://doi.org/10.1016/j.jmmm.2016.10.020

  28. Zhang, Y., et al.: Magnetism, band gap and stability of half-metallic property for the quaternary Heusler alloys CoFeTiZ (Z= Si, Ge, Sn). J. Alloys Compd. 616, 449–453 (2014)

    Google Scholar 

  29. Enamullah, Y., Venkateswara, Gupta, S., Varma, M.R., Singh, P., Suresh, K.G., Alam, A.: Phys. Rev. B. 92, 224413 Published 10 December 2015

  30. Gao, Y., Gao, X.: The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z= Al, Ga, In): a first-principle study. AIP Adv. 5(5), 057157 (2015)

    ADS  Google Scholar 

  31. Klaer, P., et al.: Element-specific magnetic moments and spin-resolved density of states in CoFeMn Z (Z= Al, Ga; Si, Ge). Phys. Rev. B. 84(14), 144413 (2011)

    ADS  Google Scholar 

  32. Bahnes, A., et al.: Half-metallic ferromagnets behavior of a new quaternary Heusler alloys CoFeCrZ (Z= P, As and Sb): Ab-initio study. J. Alloys Compd. 731, 1208–1213 (2018)

    Google Scholar 

  33. Chandra, A.R., et al.: Electronic structure properties of new equiatomic CoCuMnZ (Z=In, Sn, Sb) quaternary Heusler alloys: an ab-initio study. J. Alloys Compd. 748, 298–304 (2018)

    Google Scholar 

  34. Rani, D., et al.: Structural, electronic, magnetic, and transport properties of theequiatomic quaternary Heusler alloy CoRhMnGe: theory and experiment. Phys. Rev. B. 96(18), 184404 (2017)

    ADS  Google Scholar 

  35. Berri, S.: First-principles study on half-metallic properties of the CoMnCrSb quaternary Heusler compound. J. Supercond. Nov. Magn. 29(5), 1309–1315 (2016)

    Google Scholar 

  36. Idrissi, S., Ziti, S., Labrim, H., Khalladi, R., Mtougui, S., El Mekkaoui, N., El Housni, I., Bahmad, L.: Magnetic properties of the Heusler compound CoFeMnSi: Monte Carlo simulations, Physica a: statistical mechanics and its applications. Volume. 527, 121406 (2019). https://doi.org/10.1016/j.physa.(2019).121406

    Article  Google Scholar 

  37. Idrissi, S., Labrim, H., Ziti, S., Bahmad, L.: Structural, electronic, magnetic properties and critical behavior of the equiatomic quaternary Heusler alloy CoFeTiSn. Phys. Lett. A. 126453, 126453 (2020). https://doi.org/10.1016/j.physleta.2020.126453

    Article  Google Scholar 

  38. Gökŏglu, G.: Ab initio electronic structure of NiCoCrGa half-metallic quaternary Heusler compound. Solid State Sci. 14, 1273–1276 (2012)

    ADS  Google Scholar 

  39. Xiong, L., Yi, L., Gao, G.Y.: Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater. 360, 98–103 (2014)

    ADS  Google Scholar 

  40. Wang, X., Cheng, Z., Wang, J., Wang, L., Yu, Z., Fang, C., Yang, J., Liu, G.: Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds ZrVTiZ (Z = Al, Ga). RSC Adv. 6, 57041–57047 (2016)

    Google Scholar 

  41. Xie, H.H., Gao, Q., Li, L., Lei, G., Mao, G.Y., Hu, X.R., Deng, J.B.: First-principles study of four quaternary Heusler alloys ZrMnVZ and ZrCoFeZ (Z = Si, Ge). Comput. Mater. Sci. 103, 52–55 (2015)

    Google Scholar 

  42. Rasool, M.N., Mehmood, S., Sattar, M.A., Khan, M., Hussain, A.: J. Magn. Magn. Mater. 395, 97–108 (2015)

    ADS  Google Scholar 

  43. Idrissi, S., Labrim, H., Ziti, S., et al.: Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study. Appl. Phys. A Mater. Sci. Process. 126, 190 (2020). https://doi.org/10.1007/s00339-020-3354-6

    Article  ADS  Google Scholar 

  44. Idrissi, S., Ziti, S., Labrim, H., Bahmad, L., El Housni, I., Khalladi, R., Mtougui, S., El Mekkaoui, N.: Half-metallic behavior and magnetic proprieties of the quaternary Heusler alloys YFeCrZ (Z=Al, Sb and Sn). J. Alloys Compd. 153373 (2019). https://doi.org/10.1016/j.jallcom.2019.153373

  45. Forozani, G., Abadi, A.A.M., Baizaee, S.M., Gharaati, A.: Structural, electronic and magnetic properties of CoZrIrSi quaternary Heusler alloy: first-principles study. J. Alloys Compd. 152449, 152449 (2019). https://doi.org/10.1016/j.jallcom.2019.152449

    Article  Google Scholar 

  46. Murakami, Y., Watanabe, Y., Kachi, S.: An X-ray study of the Heusler-type ordering in AuAgZn2 Alloy. Trans. Jpn Inst. Metals. 21(11), 708–713 (1980)

    Google Scholar 

  47. Han, Y., Wu, M., Kuang, M., Yang, T., Chen, X., Wang, X.: Results Phys. 11, 1134–1141 (2018). https://doi.org/10.1016/j.rinp.2018.11.024

    Article  ADS  Google Scholar 

  48. Giannouzzi, P., et al.: J. Phys. Condens. Matter. 21, 395502 (2009) URL, “http://www.Quantum-espresso.org”

    Google Scholar 

  49. Vanderbilt, D.: Soft self-consistent pseudo-potentials in a generalized eigenvalue formalism. Phys. Rev. B. 41, 7892–7895 (1990)

    ADS  Google Scholar 

  50. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992)

    ADS  Google Scholar 

  51. Kaxiras, E.: Atomic and Electronic Structure of Solids. Cambridge University Press, London (2003)

    Google Scholar 

  52. Ribeiro, R.A.P., de Lazaro, S.R., Pianaro, S.A.: Density functional theory applied to magnetic materials: Mn3O4 at different hybrid functionals. J. Magn. Magn. Mater. 391, 166–171 (2015). https://doi.org/10.1016/j.jmmm.2015.04.091

    Article  ADS  Google Scholar 

  53. Manjunatha, K., Jagadeesha Angadi, V., Ribeiro, R.A.P., Longo, E., Oliveira, M.C., Bomio, M.R.D., de Lázaro, S.R., Matteppanavar, S., Rayaprol, S., Babu, P.D., Pasha, M.: Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166595

  54. Rusz, J., Bergqvist, L., Kudrnovský, J., Turek, I.: Exchange interactions and Curie temperatures in Ni2_xMnSb alloys: first-principles study. Phys. Rev. B. 73, 214412 (2006)

    ADS  Google Scholar 

  55. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Google Scholar 

  56. Rai, D., et al.: A comparative study of a Heusler alloy Co2FeGe using LSDA and LSDA+ U. Phys. B Condens. Matter. 407(18), 3689–3693 (2012)

    ADS  Google Scholar 

  57. Seema, K., Kaur, M., Kumar, R.: First principles study of Fe based full Heusler alloy. J. Integr. Sci. Technol. 1(1), 41–43 (2013)

    Google Scholar 

  58. Bahmad, L., Masrour, R., Benyoussef, A.: Nanographene magnetic properties: a Monte Carlo study. J. Supercond. Nov. Magn. 25(6), 2015–2018 (2012)

    Google Scholar 

  59. Bahmad, L., Benyoussef, A., Ez-Zahraouy, H.: Order–disorder layering transitions of a spin-1 Ising model in a variable crystal field. J. Magn. Magn. Mater. 251, 115–121 (2002)

    ADS  Google Scholar 

  60. Binder, K., Heermann, D.W.: MC simulations in statistical physics. Springer Series in Solid State Sciences, Garching (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Idrissi or L. Bahmad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrissi, S., Labrim, H., Ziti, S. et al. Characterization of the Equiatomic Quaternary Heusler Alloy ZnCdRhMn: Structural, Electronic, and Magnetic Properties. J Supercond Nov Magn 33, 3087–3095 (2020). https://doi.org/10.1007/s10948-020-05561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05561-8

Keywords

Navigation