Skip to main content
Log in

Static Levitation Force and Its Thickness Dependence in HTS Tape Stack System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High-temperature superconductors (HTS) have great potential for magnetic levitation applications. Nowadays, coated conductor (CC) tapes are playing an increasingly important role in this field. Compared with HTS bulk materials, CC tapes have a higher critical current density and can be mass-produced, easy to shape, and have other important advantages for magnetic levitation applications. In order to gain an in-depth understanding of the relevant levitation characteristics of CC tapes, we studied the static magnetic levitation force between the permanent magnet and HTS tape stack, with the number of the CC tapes in the stack being 10 to 160. The experimental results show that the magnetic levitation force increases steadily as the thickness of the CC tape stack increases, but gradually reaches saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murakami, M.: Electromagnetic applications of melt-processed YBCO. Ceram. Int. 23(3), 203–207 (1997)

    Article  MathSciNet  Google Scholar 

  2. Ozturk, K., Sahin, E., Abdioglu, M., Kabaer, M., Celik, S., Yanmaz, E., Kucukomeroglu, T.: Comparative study of the magnetic stiffness, levitation and guidance force properties of single and multi seeded YBCOs for different HTS-PMG arrangements. J. Alloys Compd. 643, 201–206 (2015)

    Article  Google Scholar 

  3. Liang, G., Zhao, L.F., Yang, J.L., Ma, J.Q., Zhang, Y., Wang, X.Q., Zhao, Y.: Study of the maglev performance of the side-mounted high-temperature superconductor maglev rotating system. IEEE Trans. Appl. Supercond. 25(4), 3601406 (2015)

    Google Scholar 

  4. Zhou, D.J., Cui, C.Y., Zhou, L.F., Zhang, Y., Wang, X.Q., Zhao, Y.: Static and dynamic stability of the guidance force in a side-suspended HTS maglev system. Supercond. Sci. Technol. 30(2), 025019 (2017)

    Article  ADS  Google Scholar 

  5. Zhou, D.J., Cui, C.Y., Zhou, L.F., Zhang, Y., Wang, X.Q., Zhao, Y.: Running stability of a prototype vehicle in a side-suspended HTS maglev circular test track system. IEEE Trans. Appl. Supercond. 27(4), 3600107 (2017)

    Google Scholar 

  6. Zhou, D.J., Zhao, L.F., Ke, C., Hsieh, C.C., Cui, C.Y., Zhang, Y., Zhao, Y.: High-Tc superconducting maglev prototype vehicle running at 160 km/h in an evacuated circular track. IEEE Trans. Appl. Supercond. 28(4), 3600504 (2018)

    Article  Google Scholar 

  7. Zhao, L.F., Li, L.J., Yang, Y., Yao, M.L., Li, L.B., Pan, X.F., Zhang, Y., Zhao, Y.: Attenuation of levitation performance for side-suspending HTS maglev system under vibration. IEEE Trans. Appl. Supercond. 29(7), 3603105 (2019)

    Article  Google Scholar 

  8. Zhao, Y., Ji, C.W., Yang, Y., Zhao, L.F., Zhou, D.J., Zhang, Y.: Dynamical behavior of HTS maglev system over a NdFeB guideway with a fluctuant field distribution. IEEE Trans. Appl. Supercond. 29(2), 3600606 (2019)

    Google Scholar 

  9. Terzieva, S., Vojenciak, M., Pardo, E., Grilli, F., Drechsler, A., Kling, A., Kudymow, A., Gomory, F., Goldacker, W.: Transport and magnetization ac losses of ROEBEL assembled coated conductor cables: measurements and calculations. Supercond. Sci. Technol. 23(1), 014023 (2010)

    Article  ADS  Google Scholar 

  10. Takayasu, M., Chiesa, L., Bromberg, L., Minervini, J.V.: HTS twisted stacked-tape cable conductor. Supercond. Sci. Technol. 25(1), 014011 (2012)

    Article  ADS  Google Scholar 

  11. Patel, A., Hopkins, S.C., Glowacki, B.A.: Trapped fields up to 2 T in a 12 mm square stack of commercial superconducting tape using pulsed field magnetization. Supercond. Sci. Technol. 26(3), 032001 (2013)

    Article  ADS  Google Scholar 

  12. Abrahamsen, A.B., Mijatovic, N., Seiler, E., Zirngibl, T., Traeholt, C., Norgard, P.B., Pedersen, N.F., Andersen, N.H., Ostergard, J.: Superconducting wind turbine generators. Supercond. Sci. Technol. 23(3), 034019 (2010)

    Article  ADS  Google Scholar 

  13. Gryaznevich, M., Svoboda, V., Stockel, J., Sykes, A., Sykes, N., Kingham, D., Hammond, G., Apte, P., Todd, T.N., Ball, S., Chappell, S., Melhem, Z., Duran, I., Kovarik, K., Grover, O., Markovic, T., Odstrcil, M., Odstrcil, T., Sindlery, A., Vondrasek, G., Kocman, J., Lilley, M.K., de Grouchy, P., Kim, H.T.: Progress in application of high temperature superconductor in tokamak magnets. Fusion Eng. Des. 88(9–10), 1593–1596 (2013)

    Article  Google Scholar 

  14. Koyanagi, K., Takayama, S., Tosaka, T., Tasaki, K., Kurusu, T., Yoshiyuki, T., Amemiya, N., Ogitsu, T.: Development of saddle-shaped coils using coated conductors for accelerator magnets. IEEE Trans. Appl. Supercond. 23(3), 4100404 (2013)

    Article  Google Scholar 

  15. Hahn, S., Voccio, J., Bermond, S., Park, D.K., Bascunan, J., Kim, S.B., Masaru, T., Iwasa, Y.: Field performance of an optimized stack of YBCO Square “annuli” for a compact NMR magnet. IEEE Trans. Appl. Supercond. 21(3), 1632–1635 (2011)

    Article  ADS  Google Scholar 

  16. Hahn, S., Voccio, J., Park, D.K., Kim, K.M., Tomita, M., Bascunan, J., Iwasa, Y.: A stack of YBCO annuli, thin plate and bulk, for micro-NMR spectroscopy. IEEE Trans. Appl. Supercond. 22(3), 4302204 (2012)

    Article  Google Scholar 

  17. Patel, A., Kalitka, V., Hopkins, S.C., Baskys, A., Albisetti, A.F., Giunchi, G., Molodyk, A., Glowacki, B.A.: Magnetic levitation between a slab of soldered HTS tape and a cylindrical permanent magnet. IEEE Trans. Appl. Supercond. 26(3), 3601305 (2016)

    Article  Google Scholar 

  18. Liu, K., Yang, W.J., Ma, G.T., Queval, L., Gong, T.Y., Ye, C.Q., Li, X., Luo, Z.: Experiment and simulation of superconducting magnetic levitation with REBCO coated conductor stacks. Supercond. Sci. Technol. 31(1), 015013 (2018)

    Article  ADS  Google Scholar 

  19. Deng, Z., Wang, J., Zheng, J., Lin, Q., Zhang, Y., Wang, S.: Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway. Supercond. Sci. Technol. 22(5), 055003 (2009)

    Article  ADS  Google Scholar 

  20. Sun, R.X., Zheng, J., Liao, X.L., Che, T., Gou, Y.F., He, D.B., Deng, Z.G.: Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail. Physica C. 505, 80–84 (2014)

    Article  ADS  Google Scholar 

  21. Leblond, C., Monot, I., Bourgault, D., Desgardin, G.: Effect of the oxygenation time and of the sample thickness on the levitation force of top seeding melt-processed YBCO. Supercond. Sci. Technol. 12(6), 405–410 (1999)

    Article  ADS  Google Scholar 

  22. Jung, Y., Go, S.J., Joo, H.T., Lee, Y.J., Park, S.D., Jun, B.H., Kim, C.J.: Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa2Cu3O7-y bulk superconductors. Prog. Supercond. Cryogenics. 19(1), 30–35 (2017)

    Article  Google Scholar 

  23. Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., Waszczak, J.V.: Anisotropic critica~ currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55, 283–285 (1989)

    Article  ADS  Google Scholar 

  24. Zhao, Y., Cheng, C.H., Wang, J.S.: Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor. Supercond. Sci. Technol. 18, S43–S46 (2005)

    Article  ADS  Google Scholar 

  25. Wei, J.C., Chen, J.L., Horng, L., Yang, T.J.: Thickness dependence of magnetic force and vortex creation in type-II superconducting thin film. Physica C. 267, 345–354 (1996)

    Article  ADS  Google Scholar 

  26. Osipov, M., Abin, D., Pokrovskii, S., Rudnev, I.: Investigation of HTS tape stacks for levitation applications. IEEE Trans. Appl. Supercond. 26(4), 3601704 (2016)

    Article  Google Scholar 

  27. Osipov, M., Abin, D., Pokrovskii, S., Rudnev, I.: Levitation force of magnetized HTS tape stacks. IEEE Trans. Appl. Supercond. 27(4), 3601504 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Sichuan Applied Basic Research Project under Grant 2018JY0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, L., Zhou, D. et al. Static Levitation Force and Its Thickness Dependence in HTS Tape Stack System. J Supercond Nov Magn 33, 2923–2929 (2020). https://doi.org/10.1007/s10948-020-05560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05560-9

Keywords

Navigation