Skip to main content
Log in

A Critical Study of Phase Stability and Electronic, Magnetic, and Elastic Properties in the Inverse Heusler Cr2MnSi Alloy: a First-Principles Calculations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ab initio calculations were systematically investigated for nonmagnetic (NM), ferromagnetic (FM), and antiferromagnetic (AFM) states of new full-Heusler alloy Cr2MnSi in Hg2CuTi and Cu2MnAl-type structures. The calculations are based on the density functional theory, with the full potential linear muffin-tin orbital (FP-LMTO) method. The results show that the ferromagnetic Hg2CuTi prototype structure is the most stable. The optimized lattice parameter is found to be 5.643 Å, with the total magnetic moment 0.30 μB. The electronic band structure calculations revealed that Cr2MnSi exhibits a metallic ferromagnet behavior. Using the Mehl method, we have also calculated the elastic constants and their related parameters such as Poisson’s ratio, Young modulus, Zener anisotropy, shear modulus, Kleinman parameter ξ, Lamé constants (λ, μ), Cauchy pressure Pc, microhardness parameter, and the melting temperature Tm. Our calculation validates the conditions of mechanical stability in the cubic crystal. The estimation of the Curie temperature shows that the Cr2MnSi compound is a good candidate for the spintronic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heusler, F., Starck, W., Haupt, E.: Verh DPG. 5, 220 (1903)

    Google Scholar 

  2. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys Rev Lett. 20, 2024 (1983)

    Google Scholar 

  3. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science. 294, 1488 (2001)

    ADS  Google Scholar 

  4. Prinz, G.A.: Science. 282, 1660 (1998)

    Google Scholar 

  5. Ohno, Y., Young, D.K., Beshoten, B., Matsukura, F., Ohno, H., Awschalom, D.D.: Nature. 402, 790 (1999)

    ADS  Google Scholar 

  6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science. 287, 1019 (2000)

    ADS  Google Scholar 

  7. Park, J.H., Voscovo, E., Kim, H.J., Kwon, C., Ramesh, R., Venkatesh, T.: Nature. 392, 794 (1998)

    ADS  Google Scholar 

  8. Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D.: Phys Rev B. 43, 1297 (1991)

    ADS  Google Scholar 

  9. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., Van Wees, B.J.: Phys Rev. B62, R4790 (2000)

    ADS  Google Scholar 

  10. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., Molenkamp, L.W.: Nature (London). 402, 787 (1999)

    ADS  Google Scholar 

  11. Skaftouros, S., Ozdogan, K., Sasioglu, E., Galanakis, I.: Phys Rev B. 87, 024420 (2013)

    ADS  Google Scholar 

  12. Ma, J., He, J., Mazumdar, D., Munira, K., Keshavarz, S., Lovorn, T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Phys Rev B. 98, 094410 (2018)

    ADS  Google Scholar 

  13. Savrasov, S.Y.: Phys Rev B. 54, 16470 (1996)

    ADS  Google Scholar 

  14. Savrasov, S.Y., Savrasov, D.Y.: Phys Rev B. 46, 12181 (1992)

    ADS  Google Scholar 

  15. Hohenberg, P., Kohn, W.: Phys Rev B. 136, 864 (1964)

    ADS  Google Scholar 

  16. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys Rev Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  17. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys Rev Lett. 78, 1396E (1997)

    ADS  Google Scholar 

  18. Blöchl, P., Jepsen, O., Andersen, O.K.: Phys Rev. B49, 16223 (1994)

    ADS  Google Scholar 

  19. Galanakis, I., Mavropoulos, P.: J Phys Condens Matter. 19, 315213 (2007)

    ADS  Google Scholar 

  20. Galanakis, I., Özdoğan, K., Aktas, B., Şaşioglu, E.: Appl Phys Lett. 89, 042502 (2006)

    ADS  Google Scholar 

  21. Murnaghan, F.D.: Proc Natl Acad Sci U S A. 30, 244 (1944)

    ADS  Google Scholar 

  22. Forozani, G.H., Karami, F., Moradi, M.: Acta Phys Pol A. 137, 430 (2020)

    Google Scholar 

  23. Murugeswari, R., Manikandan, M., Rajeswarapalanichamy, R., Benial, A.M.F.: Int J Mod Phys B. 34(7), 2050055 (2020)

    ADS  Google Scholar 

  24. Mehl, M.J.: Phys Rev. B47, 2493 (1993)

    ADS  Google Scholar 

  25. Akriche, A., Abidri, B., Hiadsi, S., Bouafia, H., Sahli, B.: Intermetallics. 68, 42 (2016)

    Google Scholar 

  26. Akriche, A., Bouafia, H., Hiadsi, S., Abidri, B., Sahli, B., Elchikh, M., Timaoui, M.A., Djebour, B.: J Magn Magn Mater. 422, 13 (2017)

    ADS  Google Scholar 

  27. Born, M., Huang, K.: Dynamical theory of crystal lattices. Clarendon Press, Oxford (1956)

    MATH  Google Scholar 

  28. Wallace, D.C.: Thermodynamics of crystals, vol. 40, p. 1718. Willey, New York (1972)

    Google Scholar 

  29. Wang, J., Vip, S., Phillpot, S.R., Wolf, D.: Phys Rev Lett. 71, (1993)

  30. Liu, Y., Hu, W.-C., Li, D.-J., Zeng, X.-Q., Xu, C.-S.: Phys Scr. 88, 045302 (2013)

    ADS  Google Scholar 

  31. Pugh, S.F.: Philos Mag. 45, 823 (1954)

    Google Scholar 

  32. Roshan, A., Murtaza, G., Takagiwa, Y., Khenata, R., Uddin, H., Ullah, H., Khan, S.A.: Chin Phys Lett. 31(4), 47102 (2014)

    Google Scholar 

  33. Shena, Y., Zhou, Z.: J Appl Phys. 103, 074113 (2008)

    ADS  Google Scholar 

  34. Haines, J., Leger, J.M., Bocquillon, G.: Annu Rev Mater Res. 31, 1 (2001)

    ADS  Google Scholar 

  35. Kleinman, L.: Phys Rev. 128(6), 2614 (1962)

    ADS  Google Scholar 

  36. Teter, D.M.: MRS Bull. 23, 22 (1998)

    Google Scholar 

  37. Pettifor, D.G.: Mater Sci Technol. 8, 345 (1992)

    Google Scholar 

  38. Tamer, M.: AIP Adv. 6, 065115 (2016)

    ADS  Google Scholar 

  39. Fine, M.E., Brown, L.D., Marcus, H.L.: Scr Metall. 18, 951 (1984)

    Google Scholar 

  40. Faid, F., Elchikh, M., Bahlouli, S., Kaddar, K.: J Supercond Nov Magn. 31, 2491 (2018)

    Google Scholar 

  41. Birsan, A., Palade, P., Kuncser, V.: Solid State Commun. 152, 2147 (2012)

    ADS  Google Scholar 

  42. Skaftouros, S., Özdoğan, K., Şaşıoğlu, E., Galanakis, I.: Phys Rev B. 87, 024420 (2013)

    ADS  Google Scholar 

  43. Taşkın, F., Atiş, M., Canko, O., Kervan, S., Kervan, N.: J Magn Magn Mater. 426, 473 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akriche.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akriche, A., Bezzerrouk, M.A., Naceur, R. et al. A Critical Study of Phase Stability and Electronic, Magnetic, and Elastic Properties in the Inverse Heusler Cr2MnSi Alloy: a First-Principles Calculations. J Supercond Nov Magn 33, 3145–3151 (2020). https://doi.org/10.1007/s10948-020-05554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05554-7

Keywords

Navigation