Abstract
We have carried out a systematic study on the effect of high-temperature annealing on the structural and magnetic properties of ultra-small crystalline cobalt ferrite nanoparticles prepared by the hydrothermal method. The structural and the magnetic characterizations of nanoparticles were investigated by XRD, TEM, FTIR, and VSM. The results of Rietveld refinement revealed that the nanoparticles have a cubic single-phase spinel structure. High-temperature annealing was found to increase the lattice parameter and average crystallite size of the cobalt ferrite nanoparticles. The TEM measurements showed that the nanoparticles were monodisperse and spherical in shape. The FTIR results confirmed the single-phase nature of the prepared nanoparticles. The magnetic measurements showed that the nanoparticles were ferromagnetic over a wide temperature range. We have observed that the high-temperature annealing increased both the saturation magnetization and magnetocrystalline anisotropy and decreased the coercivity. We demonstrated that magnetic field induced superparamagnetism can be induced by applying stronger magnetic fields that were able to shift the blocking temperature (TB) down to below room temperature, resulting in a superparamagnetic behavior above TB.
Similar content being viewed by others
References
Goldman, A.: Ferrites for permanent magnet applications. Modern Ferrite Technology, Springer Science & Business Media (2006)
Xiangfeng, C., Dongli, J., Yu, G., Chenmou, Z.: Ethanol gas sensor based on cofe2o4 nano-crystallines prepared by hydrothermal method. Sens. Actuators B 120(1), 177–181 (2006)
Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181(2), 245–252 (2008)
Kamran, M., Anis-ur Rehman, M.: Enhanced transport properties in ce doped cobalt ferrites nanoparticles for resistive ram applications. Journal of Alloys and Compounds 822, 153583 (2020)
Song, J., Wang, L., Xu, N., Zhang, Q.: Microwave absorbing properties of magnesium-substituted mnzn ferrites prepared by citrate-edta complexing method. Journal of Materials Science & Technology 26(9), 787–792 (2010)
Fannin, P., Marin, C., Malaescu, I., Stefu, N., Vlȧzan, P., Novaconi, S., Popescu, S.: Effect of the concentration of precursors on the microwave absorbent properties of zn/fe oxide nanopowders. J. Nanoparticle Res. 13(1), 311–319 (2011)
Reddy, L.H., Arias, J.L., Nicolas, J., Couvreur, P.: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical reviews 112(11), 5818–5878 (2012)
Su, K., Zhao, C., Wang, H., Huang, S., Liu, Z., Huo, D.: Synthesis, structure and magnetic properties of cofe2o4 ferrite nanoparticles. Materials Research Express 5(5), 056102 (2018)
Valenzuela, R.: Magnetic ceramics, Vol. 4, Cambridge university press (2005)
Meng, X., Li, H., Chen, J., Mei, L., Wang, K., Li, X.: Mössbauer study of cobalt ferrite nanocrystals substituted with rare-earth Y3+ ions. J. Magn. Magn. Mater. 321(9), 1155–1158 (2009)
Goldman, A.: Modern ferrite technology Springer Science & Business Media US (2006)
Thota, S., Kashyap, S.C., Sharma, S.K., Reddy, V.: Cation distribution in Ni-substituted Mn0. 5Zn0. 5Fe2O4 nanoparticles: A Raman, mössbauer, X-ray diffraction and electron spectroscopy study. Materials Science and Engineering: B 206, 69–78 (2016)
Raland, R., Saikia, D., Borgohain, C., Borah, J.: Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. Journal of Physics D: Applied Physics 50(32), 325004 (2017)
Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B.: Thermomagnetic properties of Co1- xZnxFe2O4 (x = 0.1–0.5) nanoparticles. J. Magn. Magn. Mater. 303(1), 131–137 (2006)
Tawfik, A., Hamada, I., Hemeda, O.: Effect of laser irradiation on the structure and electromechanical properties of Co–Zn ferrite. J. Magn. Magn. Mater. 250, 77–82 (2002)
Duong, G., Hanh, N., Linh, D., Groessinger, R., Weinberger, P., Schafler, E., Zehetbauer, M.: Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: Synthesis and characterization. J. Magn. Magn. Mater. 311(1), 46–50 (2007)
Gözüak, F., Köseoġlu, Y., Baykal, A., Kavas, H.: Synthesis and characterization of CoxZn1- xFe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of magnetism and magnetic materials 321(14), 2170–2177 (2009)
Waje, S.B., Hashim, M., Yusoff, W.D.W., Abbas, Z.: X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl. Surf. Sci. 256(10), 3122–3127 (2010)
Vignesh, H., Vishnu, V., Balakumar, P., Raguram, T., Rajni, K.: Structural and magnetic properties of cobalt ferrite (cofe2o4) nanoparticles by sol-gel technique using yeast. In: IOP Conference Series: Materials Science and Engineering, Vol. 577, IOP Publishing, p. 012092 (2019)
Mathew, D.S., Juang, R.-S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal 129(1-3), 51–65 (2007)
Jalili, H., Aslibeiki, B., Varzaneh, A.G., Chernenko, V.A.: The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein journal of nanotechnology 10(1), 1348–1359 (2019)
Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33(1), 1–8 (2013)
Jun, Y.-w., Huh, Y.-M., Choi, J.-s., Lee, J.-H., Song, H.-T., Kim, S., Kim, S., Yoon, S., Kim, K.-S., Shin, J.-S., et al.: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127(16), 5732–5733 (2005)
Şincai, M., Gângǎ, D., Bica, D., Vékás, L.: The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma. Journal of magnetism and magnetic materials 225(1-2), 235–240 (2001)
Tiano, A.L., Papaefthymiou, G.C., Lewis, C.S., Han, J., Zhang, C., Li, Q., Shi, C., Abeykoon, A.M., Billinge, S.J., Stach, E., et al.: Correlating size and composition-dependent effects with magnetic, mossbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem. Mater. 27(10), 3572–3592 (2015)
Young, R.A.: The rietveld method, Vol. 5 International union of crystallography (1993)
Sickafus, K.E., Hughes, R.: Spinel compounds: structure and property relations (1999)
Kumar, L., Kumar, P., Narayan, A., Kar, M.: Rietveld analysis of xrd patterns of different sizes of nanocrystalline cobalt ferrite. International Nano Letters 3(1), 8 (2013)
Bujakiewicz-Korońska, R., HetmańCzyk, Ł., Garbarz-glos, B., Budziak, A., Kalvane, A., Bormanis, K., Drużbicki, K.: Low temperature measurements by infrared spectroscopy in cofe2o4 ceramic. Open Physics 10(5), 1137–1143 (2012)
Toksha, B., Shirsath, S.E., Patange, S., Jadhav, K.: Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147(11-12), 479–483 (2008)
Rao, K., Choudary, G., Rao, K., Sujatha, C.: Structural and magnetic properties of ultrafine cofe2o4 nanoparticles. Procedia Materials Science 10, 19–27 (2015)
White, W., DeAngelis, B.: Interpretation of the vibrational spectra of spinels. Spectrochimica Acta Part A: Molecular Spectroscopy 23(4), 985–995 (1967)
Naseri, M.G., Saion, E.B., Ahangar, H.A., Shaari, A.H., Hashim, M.: Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. 2010, 75 (2010)
Poudyal, N.: Fabrication of Superparamagnetic and Ferromagnetic Nanoparticles. Ph.D. thesis, The University of Texas at Arlington (2008)
Moubah, R., Ahlberg, M., Zamani, A., Olsson, A., Shi, S., Sun, Z., Carlson, S., Hallen, A., Hjörvarsson, B., Jönsson, P. E.: Origin of the anomalous temperature dependence of coercivity in soft ferromagnets. Journal of Applied Physics 116(5), 053906 (2014)
Kumar, L., Kar, M.: Effect of annealing temperature and preparation condition on magnetic anisotropy in nanocrystalline cobalt ferrite. IEEE Trans. Magn. 47(10), 3645–3648 (2011)
Kumar, L., Kumar, P., Srivastava, S., Kar, M.: Low temperature and high magnetic field dependence and magnetic properties of nanocrystalline cobalt ferrite. J. Supercond. Nov. Magn. 27(7), 1677–1681 (2014)
Maaz, K., Mumtaz, A., Hasanain, S., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (cofe2o4) nanoparticles prepared by wet chemical route. Journal of magnetism and magnetic materials 308(2), 289–295 (2007)
Nairan, A., Khan, M., Khan, U., Iqbal, M., Riaz, S., Naseem, S.: Temperature-dependent magnetic response of antiferromagnetic doping in cobalt ferrite nanostructures. Nanomaterials 6(4), 73 (2016)
Del Barco, E., Asenjo, J., Zhang, X., Pieczynski, R., Julia, A., Tejada, J., Ziolo, R., Fiorani, D., Testa, A.: Free rotation of magnetic nanoparticles in a solid matrix. Chemistry of materials 13(5), 1487–1490 (2001)
Funding
We received financial support from the deanship of scientific research at the Hashemite university under project number 75/2017.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alzoubi, G.M., Albiss, B.A., Shatnawi, M. et al. Influence of High-Temperature Annealing on Structural and Magnetic Properties of Crystalline Cobalt Ferrite Nanoparticles in the Single-Domain Regime. J Supercond Nov Magn 33, 3179–3188 (2020). https://doi.org/10.1007/s10948-020-05551-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10948-020-05551-w