Design of Magnetic Fluid Sensor Using Elliptically Hole Assisted Photonic Crystal Fiber (PCF)


The magnetic field sensor based on Photonic Crystal Fiber (PCF) is proposed by tuning the structure and magnetic fluid which is injected into the core. The sensitivity and resolution response of the magnetic field sensor under different magnetic field strength has been calculated for the magnetic field strength range from 100 Oe to 160 Oe. The investigated result shows the highest sensitivity response of 5000 pm/Oe and resolution of 11.33 Oe. The proposed structure has a vital role on nanofluidic technology. Because of the tenability of external magnetic field strength, high sensitivity and resolution the structure gives an awaited technology for the nanofluidics research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Sultana, J., Islam, M.S., Ahmed, K., Dinovitser, A., Ng, B.W.H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2433 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    Ahmed, K., Haque, M.J., Jabin, M.A., Paul, B.K., Amiri, I.S., Yupapin, P.: Tetra-Core Surface Plasmon Resonance Based Biosensor for Alcohol Sensing. Phys. B Condens. Matter. 570, 48 (2019)

    ADS  Article  Google Scholar 

  3. 3.

    Liu, Q., Li, S.G., Wang, X.: Sensing characteristics of a MF-filled photonic crystal fiber Sagnac interferometer for magnetic field detecting. Sensors Actuators B Chem. 242, 949–955 (2017)

    Article  Google Scholar 

  4. 4.

    Zu, P., Chiu Chan, C., Gong, T., Jin, Y., Chang Wong, W., Dong, X.: Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid. Appl. Phys. Lett. 101(24), 241118 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    Zu, P., Chan, C.C., Lew, W.S., Jin, Y., Zhang, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 37(3), 398–400 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    Liu, D., Tong, W., Liu, S., Liu, H.: Study on the fabrication techniques of photonic crystal fiber and PCF based structures. In: Physics and simulation of optoelectronic devices XIII, vol. 5722, pp. 123–129. International Society for Optics and Photonics (2005)

  7. 7.

    Nakatsuka, K., Hama, Y., Takahashi, J.: Heat transfer in temperature-sensitive magnetic fluids. J. Magn. Magn. Mater. 85(1–3), 207–209 (1990)

    ADS  Article  Google Scholar 

  8. 8.

    Chen, Y.F., Yang, S.Y., Tse, W.S., Horng, H.E., Hong, C.Y., Yang, H.C.: Thermal effect on the field-dependent refractive index of the magnetic fluid film. Appl. Phys. Lett. 82(20), 3481–3483 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    Zu, P., Chan, C.C., Lew, W.S., Hu, L., Jin, Y., Liew, H.F., Chen, L.H., Wong, W.C., Dong, X.: Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber. IEEE Photonics Journal. 4(2), 491–498 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    Miao, Y., Ma, X., Wu, J., Song, B., Zhang, H., Zhang, K., Liu, B., Yao, J.: Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids. Opt. Lett. 40(16), 3905–3908 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    Ren, X., Ren, K., Cai, Y.: Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56(31), H1–H9 (2017)

    Article  Google Scholar 

  12. 12.

    Wang, W., Zhang, H., Li, B., Li, Z., Miao, Y.: Optical fiber magnetic field sensor based on birefringence in liquid core optical waveguide. Opt. Fiber Technol. 50, 114–117 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    Arif, M.F.H., Ahmed, K., Asaduzzaman, S., Azad, M.A.K.: Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sensors. 6(3), 279–288 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Liu, T., Chen, X., Di, Z., Zhang, J., Li, X., Chen, J.: Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk. Chin. Opt. Lett. 6(3), 195–197 (2008)

    Article  Google Scholar 

  15. 15.

    Zhao, Y., Zhang, Y., Wang, Q., Lv, R.: Optical sensing characteristics of the photonic crystal fiber filled with magnetic fluid. Optik-International Journal for Light and Electron Optics. 125(7), 1829–1832 (2014)

    Article  Google Scholar 

  16. 16.

    Chakma, S., Khalek, M.A., Paul, B.K., Ahmed, K., Hasan, M.R., Bahar, A.N.: Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sensing and Bio-Sensing Research. 18, 7–12 (2018)

    Article  Google Scholar 

  17. 17.

    Mitu, S.A., Dey, D.K., Ahmed, K., Paul, B.K., Luo, Y., Zakaria, R., Dhasarathan, V.: Fe3O4 nanofluid injected photonic crystal fiber for magnetic field sensing applications. J. Magn. Magn. Mater. 494, 165831 (2020)

    Article  Google Scholar 

  18. 18.

    Asaduzzaman, S., Ahmed, K., Bhuiyan, T., Farah, T.: Hybrid photonic crystal fiber in chemical sensing. SpringerPlus. 5(1), 748 (2016)

    Article  Google Scholar 

  19. 19.

    Jabin, M.A., Ahmed, K., Rana, M.J., Paul, B.K., Islam, M., Vigneswaran, D., Uddin, M.S.: Surface Plasmon resonance based titanium coated biosensor for Cancer cell detection. IEEE Photonics Journal. 11(4), 1–10 (2019)

    Article  Google Scholar 

  20. 20.

    Thakur, H.V., Nalawade, S.M., Gupta, S., Kitture, R., Kale, S.N.: Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl. Phys. Lett. 99(16), 161101 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    Ren, K., Ren, X., He, Y., Han, Q.: Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances. Beilstein Journal of Nanotechnology. 10(1), 247–255 (2019)

    Article  Google Scholar 

  22. 22.

    Ying, Y., Hu, N., Si, G.Y., Xu, K., Liu, N., Zhao, J.Z.: Magnetic field and temperature sensor based on D-shaped photonic crystal fiber. Optik. 176, 309–314 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    Zhang, W., Chen, H., Liu, Y., Ma, M., Li, S.: Analysis of a magnetic field sensor based on photonic crystal fiber selectively infiltrated with magnetic fluids. Opt. Fiber Technol. 46, 43–47 (2018)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vigneswaran Dhasarathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitu, S.A., Ahmed, K., Hossain, M.N. et al. Design of Magnetic Fluid Sensor Using Elliptically Hole Assisted Photonic Crystal Fiber (PCF). J Supercond Nov Magn 33, 2189–2198 (2020).

Download citation


  • Magnetic sensor
  • Magnetic fluids
  • FEM based sensitivity
  • Optical sensor
  • Magnetic strength