Skip to main content
Log in

Magnetic Resonated Bilayer Square-Ring–Enabled Dual-Peak Metamaterial Absorber in P-Band

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In order to investigate the effect of magnetic metal on the absorption performance of metamaterial absorber (MMA), a dual-peak MMA based on magnetic metal nickel is designed and demonstrated in the P-band (300–1000 MHz). Two-layer square-ring-metal resonator arrays and two-layer dielectric substrates are arranged alternately with each other to constitute the proposed dual-peak MMA backed with a reflective metal plate. The influences of copper or nickel metallic layers on the absorption coefficients are comparatively analyzed. For the nickel MMA, the dual-peak absorption coefficients of 99.82% and 99.09% are achieved at 394 MHz and 605 MHz, respectively. Moreover, the thickness of dual-peak MMA could be reduced to 9 mm by employing magnetic metal nickel. The physical mechanism of dual-peak absorption is illustrated by surface current distributions, magnetic field distributions and power loss density distributions. The relationship between the changes of geometric dimensions and the shift of peak absorption frequencies is ultimately discussed. These results could provide instructive guidance for realizing a thin dual-peak MMA in the P-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tian, H., Liu, H., Cheng, H.: Compos. Sci. Technol. 90(2), 202–208 (2014)

    Article  Google Scholar 

  2. Thomassin, J.M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C.: Mater. Sci. Eng. R-Rep. 74(7), 211–232 (2013)

    Article  Google Scholar 

  3. Ameli, A., Nofar, M., Wang, S., Park, C.B.: ACS Appl. Mater. Interfaces. 6(14), 11091–11100 (2014)

    Article  Google Scholar 

  4. Wu, K.H., Cheng, K.F., Wang, J.C.: Mater. Express. 7(6), 500–508 (2017)

    Article  Google Scholar 

  5. Shu, R.W., Xing, H.L., Cao, X.L., Ji, X.L., Tan, D.X., Gan, Y.: Nano. 11(04), 1650047 (2016)

    Article  Google Scholar 

  6. Knott, E.F., Lunden, C.D.: IEEE Trans. Antennas Propag. 43(11), 1339–1343 (1995)

    Article  ADS  Google Scholar 

  7. Chen, H.Y., Zhang, H.B., Deng, L.J.: IEEE Antennas Wirel. Propag. Lett. 9(1), 899–901 (2010)

    Article  ADS  Google Scholar 

  8. Cheng, Y.Z., Nie, Y., Wang, X., Gong, R.Z.: J. Appl. Phys. 115, 064902 (2014)

    Article  ADS  Google Scholar 

  9. Zhao, J.M., An, W.X., Li, D.A., Yang, X.L.: Synth. Met. 161(19–20), 2144–2148 (2011)

    Article  Google Scholar 

  10. Sudeep, P.M., Vinayasree, S., Mohanan, P.M., Ajayan, P.M., Narayanan, T.N., Anantharaman, M.R.: Appl. Phys. Lett. 106, 221603 (2015)

    Article  ADS  Google Scholar 

  11. He, J., Deng, L.W., Liu, S., Yan, S.Q., Luo, H., Li, Y.H., He, L.H., Huang, S.X.: J. Magn. Magn. Mater. 444, 49–53 (2017)

    Article  ADS  Google Scholar 

  12. Luo, J.L., Pan, S.K., Qiao, Z.Q., Cheng, L.Q., Wang, Z.Z., Lin, P.H., Chang, J.Q.: J. Electron. Mater. 47(1), 751–759 (2018)

    Article  ADS  Google Scholar 

  13. Jazirehpour, M., Shams, M.H.: J. Supercond. Nov. Magn. 30, 171–177 (2017)

    Article  Google Scholar 

  14. Arora, A., Narang, S.B.: J. Supercond. Nov. Magn. 29, 2881–2886 (2016)

    Article  Google Scholar 

  15. Yang, R.B., Liang, W.F., Lin, W.S., Lin, H.M., Tsay, C.Y., Lin, C.K.: J. Appl. Phys. 109, 07B527 (2011)

    Article  Google Scholar 

  16. Toit, L.J.D.: IEEE Antennas Propag. Mag. 36(6), 17–25 (1994)

    Article  ADS  Google Scholar 

  17. Wang, X.X., Zhang, W.L., Ji, X.Q., Zhang, B.Q., Yu, M.X., Zhang, W., Liu, J.Q.: RSC Adv. 6, 106187–106193 (2016)

    Article  Google Scholar 

  18. Deng, L.W., Ding, L., Zhou, K.S., Huang, S.X., Hu, Z.W., Yang, B.C.: J. Magn. Magn. Mater. 323(14), 1895–1898 (2011)

    Article  ADS  Google Scholar 

  19. Luo, H., Feng, W.L., Liao, C.W., Deng, L.W., Liu, S., Zhang, H.B., Xiao, P.: J. Appl. Phys. 123, 104103 (2018)

    Article  ADS  Google Scholar 

  20. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  21. Cheng, Y.Z., Cheng, Z.Z., Mao, X.S., Gong, R.Z.: Materials. 10, 1241 (2017)

    Article  ADS  Google Scholar 

  22. Huang, M.L., Cheng, Y.Z., Cheng, Z.Z., Chen, H.R., Mao, X.S., Gong, R.Z.: Materials. 11, 540 (2018)

    Article  ADS  Google Scholar 

  23. Lim, J.H., Kim, S.S.: AIP Adv. 7, 125223 (2017)

    Article  ADS  Google Scholar 

  24. Wen, Q.Y., Zhang, H.W., Xie, Y.S., Yang, Q.H., Liu, Y.L.: Appl. Phys. Lett. 95, 241111 (2009)

    Article  ADS  Google Scholar 

  25. Yoo, Y.J., Zheng, H.Y., Kim, Y.J., Rhee, J.Y., Kang, J.-H., Kim, K.W., Cheong, H., Kim, Y.H., Lee, Y.P.: Appl. Phys. Lett. 105, 041902 (2014)

    Article  ADS  Google Scholar 

  26. Khuyen, B.X., Tung, B.S., Dung, N.V., Yoo, Y.J., Kim, Y.J., Kim, K.W., Lam, V.D., Yang, J.C., Lee, Y.P.: J. Appl. Phys. 117, 243105 (2015)

    Article  ADS  Google Scholar 

  27. Wang, N., Dong, X.C., Zhou, W.C., He, C.W., Jiang, W., Hu, S.: AIP Adv. 6, 025205 (2016)

    Article  ADS  Google Scholar 

  28. Su, Z.X., Yin, J.B., Zhao, X.P.: Opt. Express. 23(2), 1679–1690 (2015)

    Article  ADS  Google Scholar 

  29. Zhang, N., Zhou, P.H., Cheng, D.M., Weng, X.L., Xie, J.L., Deng, L.J.: Opt. Lett. 38(7), 1125–1127 (2013)

    Article  ADS  Google Scholar 

  30. He, R., He, W., Zhong, M.: Phys. E. 84, 135–140 (2016)

    Article  Google Scholar 

  31. Li, H., Yuan, L.H., Zhou, B., Shen, X.P., Cheng, Q., Cui, T.J.: J. Appl. Phys. 110, 014909 (2011)

    Article  ADS  Google Scholar 

  32. Hu, C.G., Li, X., Feng, Q., Chen, X.N., Luo, X.G.: Opt. Express. 18(7), 6598–6603 (2010)

    Article  ADS  Google Scholar 

  33. Li, M.H., Liu, S.Y., Guo, L.Y., Lin, H., Yang, H.L., Xiao, B.X.: Opt. Commun. 295, 262–267 (2013)

    Article  ADS  Google Scholar 

  34. Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Li, X.F., Zhai, X.: Appl. Phys. Express. 7(8), 082601 (2014)

    Article  ADS  Google Scholar 

  35. Li, M., Xiao, S.Q., Bai, Y.Y., Wang, B.Z.: IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012)

    Article  ADS  Google Scholar 

  36. Huang, M.L., Cheng, Y.Z., Cheng, Z.Z., Chen, H.R., Mao, X.S., Gong, R.Z.: Opt. Commun. 415, 194–201 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFA0204600 and the National Natural Science Foundation of China under Grant No. 51802352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longhui He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Luo, H., He, J. et al. Magnetic Resonated Bilayer Square-Ring–Enabled Dual-Peak Metamaterial Absorber in P-Band. J Supercond Nov Magn 32, 3593–3600 (2019). https://doi.org/10.1007/s10948-019-5137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5137-x

Keywords

Navigation