Skip to main content
Log in

Large Magnetic Entropy Change in Pr2/3Sr1/3MnO3-CuO Composite at Room Temperature

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report in this paper the impact of copper oxide (CuO) on the structural, magnetic, and magnetocaloric properties of Pr2/3Sr1/3MnO3 (PSMO) material. Our samples were synthesized by conventional solid-state reaction. The phase formation with no impurities was verified using the X-ray diffraction (XRD). The magnetic properties measured by Magnetic Properties Measurement System (MPMS) show the impact of the AFM CuO semiconductor on the magnetization and the transition temperature of the composite. The magnetic entropy changes were calculated from the isothermal curve of the magnetization as a function of the magnetic field. It is found that a small amount of copper oxide is enough to enhance the magnetocaloric properties of our materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21(45), 4545–4564 (2009)

    Article  Google Scholar 

  2. Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 78(6), 1142–1145 (1997)

    Article  ADS  Google Scholar 

  3. Heo, S.N., Kim, G.W., Koo, B.H.: Study of magnetic entropy change in La0.65Sr0.35Cu0.1Mn0.9O3 complex perovskite. J. Electroceram. 46–50 (2013)

  4. Choithrani, R., Bhat, M.A., Gaur, N.K.: Influence of silver doping on the magnetoresistance and temperature coef fi cient of resistance in Pr0.67Sr0.33MnO3. J. Magn. Magn. Mater. 361, 19–24 (2014)

    Article  ADS  Google Scholar 

  5. Kawasaki, M., Izumi, M., Konishi, Y., Manako, T., Tokura, Y.: Perfect epitaxy of perovskite manganite for oxide spin-electronics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 63(1), 49–57 (1999)

    Article  Google Scholar 

  6. Balcells, L., Calvo, E., Fontcuberta, J.: Room-temperature anisotropic magnetoresistive sensor based on manganese perovskite thick films. J. Magn. Magn. Mater. 242–245(PART II), 1166–1168 (2002)

    Article  ADS  Google Scholar 

  7. Brück, E., Tegus, O., Thanh, D.T.C., Buschow, K.H.J.: Magnetocaloric refrigeration near room temperature (invited). J. Magn. Magn. Mater. 310(2 SUPPL. PART 3), 2793–2799 (2007)

    Article  ADS  Google Scholar 

  8. Phan, M.H., Yu, S.C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)

    Article  ADS  Google Scholar 

  9. Pecharsky, V.K., Gschneidner, K.A.: Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K. Appl. Phys. Lett. 70(70), 3299 (1997)

    Article  ADS  Google Scholar 

  10. Pecharsky, K.A., Gschneidner, V.K.: Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). J. Magn. Magn. Mater. 167(3), L179–L184 (1997)

    Article  ADS  Google Scholar 

  11. Kaštil, J., Javorský, P., Kamarád, J., Šantavá, E.: Magnetocaloric effect of Gd-Tb alloys: influence of the sample shape anisotropy. Appl. Phys. A Mater. Sci. Process. 104(1), 205–209 (2011)

    Article  ADS  Google Scholar 

  12. Balli, M., Fruchart, D., Gignoux, D.: The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature. Appl. Phys. Lett. 92(23), 17–20 (2008)

    Article  Google Scholar 

  13. Pandey, S., et al.: Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia. Int. J. Hyperth. 0(0), 000 (2017)

    Google Scholar 

  14. El Maalam, K., et al.: Magnetocaloric properties of zinc-nickel ferrites around room temperature. J. Supercond. Nov. Magn. 2–6 (2017)

  15. Aryal, A., Quetz, A., Pandey, S., Dubenko, I., Stadler, S., Ali, N.: Magnetocaloric effects and transport properties of rare-earth (R ¼ La, Pr, Sm) doped Ni50-xRxMn35Sn15 Heusler alloys. J. Alloys Compd. 717, 254–259 (2017)

    Article  Google Scholar 

  16. Selmi, A., M’Nassri, R., Cheikhrouhou-Koubaa, W., Boudjada, N.C., Cheikhrouhou, A.: The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1-xCoxO3manganites. Ceram. Int. 41(6), 7723–7728 (2015)

    Article  Google Scholar 

  17. Chand, U., Yadav, K., Gaur, A., Varma, G.D.: Effect of different synthesis techniques on structural, magnetic and magneto-transport properties of Pr0.7Sr0.3MnO3 manganite. J. Rare Earths. 28(5), 760–764 (2010)

    Article  Google Scholar 

  18. Ravi, S., Karthikeyan, A.: Effect of calcination temperature on La0.7Sr0.3MnO3 nanoparticles synthesized with modified sol-gel route. Phys. Procedia. 54(C), 45–54 (2014)

    Article  ADS  Google Scholar 

  19. Romero, M., et al.: Effect of lanthanide on the microstructure and structure of LnMn0.5Fe0.5O3 nanoparticles with Ln=La, Pr, Nd, Sm and Gd prepared by the polymer precursor method. J. Solid State Chem. 221, 325–333 (2015)

    Article  ADS  Google Scholar 

  20. Tejaswini, P.D.B., Daivajna, M.D., Thrupthi: Structural, electrical, magnetic and thermal properties of Pr0.8-xDyxSr0.2MnO3with (x = 0, 0.2 and 0.25). J. Alloys Compd. 741, 97–105 (2018)

    Article  Google Scholar 

  21. Chen, W., et al.: Magnetocaloric effect in Nd doped perovskite La0.7-xNd xBa0.3MnO3 polycrystalline near room temperature. J. Alloys Compd. 395(1–2), 23–25 (2005)

    Article  Google Scholar 

  22. Nasri, M., Khelifi, J., Triki, M., Dhahri, E., Hlil, E.K.: Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites. J. Alloys Compd. 678, 427–433 (2016)

    Article  Google Scholar 

  23. Anwar, M.S., Ahmed, F., Danish, R., Koo, B.H.: Impact of Co3O4 phase on the magnetocaloric effect and magnetoresistance in La0.7Sr0.3MnO3/Co3O4 and La0.7Ca0.3MnO3/Co3O4 ceramic composites. Ceram. Int. 41(1), 631–637 (2014)

    Article  Google Scholar 

  24. Banerjee, S.K.: On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  25. R Caballero-Flores et al., “Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: an analysis of the validity of the Maxwell relation and the nature of the phase transitions,” J. Phys. Condens. Matter 26 (2014) 286001 (10pp)

  26. Khlifi, M., Bejar, M., Sadek, O.E.L., Dhahri, E., Ahmed, M.A., Hlil, E.K.: Structural , magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2 − x x MnO3 ( x = 0 – 0.20) manganites oxides. J. Alloys Compd. 509(27), 7410–7415 (2011)

    Article  Google Scholar 

Download references

Funding

This work was supported by the MESRSFC (Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres) in the Framework of the national program PPR under contract no. PPR/2015/57. A. Mahmoud is grateful to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT n 1510399.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Fkhar or O. Mounkachi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fkhar, L., Mounkachi, O., El Maalam, K. et al. Large Magnetic Entropy Change in Pr2/3Sr1/3MnO3-CuO Composite at Room Temperature. J Supercond Nov Magn 32, 3579–3585 (2019). https://doi.org/10.1007/s10948-019-5136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5136-y

Keywords

Navigation