Skip to main content
Log in

Superconducting Properties of LaSn3 Under Positive Hydrostatic Pressure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

A Correction to this article was published on 01 August 2019

This article has been updated

Abstract

Superconducting properties of LaSn3 were calculated at ambient and applied positive hydrostatic pressure. The lattice structure of LaSn3 remained stable at ambient and all applied positive hydrostatic pressures due to the positive frequency of phonon dispersion plots for all modes of vibrations. The electron-phonon coupling constant (λep) and superconducting transition temperature (Tc) show an almost linear decrease with positive hydrostatic pressure. The majority of electron‑electron interaction is mediated by acoustic modes of vibration in comparison to optical modes of vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 01 August 2019

    The original version of this article unfortunately contained a mistake in Fig. 4(b) and Fig. 5(b). On the Y-axis, (states/eV) should be F(w)(states/eV). The original article has been corrected.

References

  1. Uzunok, H.Y., Tütüncü, H.M., Karaca, E., Başoǧlu, A., Srivastava, G.P.: Philos. Mag. Lett. 98, 375–391 (2018)

    Article  ADS  Google Scholar 

  2. Ram, S., Kanchana, V., Vaitheeswaran, G., Svane, A., Dugdale, S.B., Christensen, N.E.: Phys. Rev. B. 85, 174531 (2012)

    Article  ADS  Google Scholar 

  3. Cao, J.J., Gou, X.F., Wang, T.E.: Comput. Mater. Sci. 150, 491–499 (2018)

    Article  Google Scholar 

  4. Gambino, R.J., Stemple, N.R., Toxen, A.M.: J. Phys. Chem. Solids. 29, 295 (1968)

    Article  ADS  Google Scholar 

  5. Stassis, C., Zarestky, J., Loong, C.K., McMasters, O.D., Nicklow, R.M.: Phys. Rev. B. 23, 2227 (1981)

    Article  ADS  Google Scholar 

  6. Bazhirov, T., Noffsinger, J., Cohen, M.L.: Phys. Rev. B. 82, 184509 (2010)

    Article  ADS  Google Scholar 

  7. Chan, K.T., Malone, B.D., Cohen, M.L.: Phys. Rev. B. 86, 094515 (2012)

    Article  ADS  Google Scholar 

  8. Pogrebnyakov, A.V., Redwing, J.M., Raghavan, S., Vaithyanathan, V., Schlom, D.G., Xu, S.Y., Li, Q., Tenne, D.A., Soukiassian, A., Xi, X.X., Johannes, M.D., Kasinathan, D., Pickett, W.E., Wu, J.S., Spence, J.C.H.: Phys. Rev. Lett. 93, 147006 (2004)

    Article  ADS  Google Scholar 

  9. Hur, N., Sharma, P.A., Guha, S., Cieplak, M.Z., Werder, D.J., Horibe, Y., Chen, C.H., Cheong, S.W.: Appl. Phys. Lett. 79, 4180 (2001)

    Article  ADS  Google Scholar 

  10. De Long, L.E., Maple, M.B., McCallum, R.W., Woolf, L.D., Shelton, R.N., Johnston, D.C.: J. Low Temp. Phys. 34, 445–485 (1979)

    Article  ADS  Google Scholar 

  11. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  13. Eliashberg, G.M.: Zh. Eksp. Teor. Fiz. 38, 966 (1960)

    Google Scholar 

  14. Migdal, A.B.: Zh. Eksp. Teor. Fiz. 34, 1438 (1958)

    Google Scholar 

  15. Allen, P.B.: Phys. Rev. B. 6, 2577 (1972)

    Article  ADS  Google Scholar 

  16. Allen, P.B., Dynes, R.C.: Phys. Rev. B. 12, 905 (1975)

    Article  ADS  Google Scholar 

  17. McMillan, W.L.: Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  18. Landelli, A., Palenzona, A.: Handbook on the physics and chemistry of rare earths 2. North-Holland, Amsterdam (1979)

    Google Scholar 

  19. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. Singh, S., Kumar, R.: J. Supercond. Nov. Magn. 31, 943–1278 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Calculations for LaSn3 at ambient pressure and all applied hydrostatic pressure were done at high performance computing facility (HPC) at IUAC, Delhi, and at National Param Supercomputing Facility (NPSF) at CDAC, Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: On the Y-axis of Fig. 4(b) and Fig. 5(b), (states/eV) should be F(w)(states/eV). Also, the subpanels for Figure 7a and b were interchanged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kumar, R. Superconducting Properties of LaSn3 Under Positive Hydrostatic Pressure. J Supercond Nov Magn 32, 3431–3436 (2019). https://doi.org/10.1007/s10948-019-5134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5134-0

Keywords

Navigation