Skip to main content
Log in

Magnetic and Magnetotransport Characteristics of Cr-Substituted Ni55Mn34Sn11 Thin Films Grown by Magnetron Sputtering

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Highly oriented Cr-substituted Ni55Mn34Sn11 Heusler thin films having thickness ~ 400 nm were deposited by Ultrahigh vacuum dc magnetron sputtering on MgO (100) substrates. At room temperature, the films exhibit a mixture of dominant L21 cubic austenite phase, as revealed by the intense (002) and (004) peaks, along with small fraction of the orthorhombic–martensitic phase. Surface morphology of the thin films showed distribution of Cr-rich and Cr-deficit regions together with patterned and aligned magnetic domains, thus bringing out the inherent room temperature ferromagnetism of the film. At temperatures above the Curie temperature, TC ~ 321 K, the magnetic behaviour of the films is seen to follow the Curie law rather than the Curie–Weiss law. Ferromagnetic to antiferromagnetic transition appears at TN ~ 247 K, which gives rise to exchange bias at low temperatures due to the coexistence of the two magnetic orders. This phase coexistence also leads to the formation of a spin glass state deep into the martensitic region. The film exhibits metal-like nature at high temperature and semiconductor-like behaviour with the lowering of temperature. A reentrant metallic state is observed at T ≤ 38 K during cooling that persists up to ≤ 62 K in warming cycle. The hysteresis in the ρT curve spread over a very wide temperature range confirms the magnetic phase coexistence in the martensitic state in the present thin films. The magnetoresistance (MR) first increases (2.4% at 300 K and H = 50 kOe) with temperature and maximizes to around ~ 3.25% at T = 150 K and then starts decreasing. Its value in the glassy state is very small. This shows that a magnetic liquid like state is more conducive to larger MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Webster, P.J.: Heusler alloys. Contemp. Phys. 10, 559 (1969)

    ADS  Google Scholar 

  2. Nanda, B.R.K., Dasgupta, I.: J. Phys. Condens. Matter. 15, 7307 (2003)

    ADS  Google Scholar 

  3. Galanakis, I., Mavropoulos, P., Dederichs, P.H.: J. Phys. D. Appl. Phys. B. 765, (2006)

  4. Galanakis, I., Mavropoulos, P.: J. Phys. Condens. Matter. 19, 315213 (2007)

    ADS  Google Scholar 

  5. Planes, A., Mañosa, L., Acet, M.: J. Phys. Condens. Matter. 21, 233201 (2009)

    ADS  Google Scholar 

  6. Felser, C., Wollmann, L., Chadov, S., Fecher, G.H., Parkin, S.S.P.: APL Mater. 3, 41518 (2015)

    Google Scholar 

  7. Bainsla, L., Suresh, K.G.: Citation Appl. Phys. Rev. 3, 031101 (2016)

    ADS  Google Scholar 

  8. Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., Oikawa, K.: Appl. Phys. Lett. 85, 4358 (2004)

    ADS  Google Scholar 

  9. Graf, T., Felser, C., Parkin, S.S.P.: Prog. Solid State Chem. 39, 1 (2011)

    Google Scholar 

  10. Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Prida, V.M., Baldomir, D., Serantes, D., Varga, R., González, J.: Appl. Phys. Lett. 92, 132507 (2008)

    ADS  Google Scholar 

  11. Aksoy, S., Acet, M., Deen, P.P., Mañosa, L., Planes, A.: Phys. Rev. B. 79, 212401 (2009)

    ADS  Google Scholar 

  12. Chatterjee, S., Giri, S., De, S.K., Majumdar, S.: Phys. Rev. B. 79, 92410 (2009)

    ADS  Google Scholar 

  13. Khan, M., Jung, J., Stoyko, S.S., Mar, A., Quetz, A., Samanta, T., Dubenko, I., Ali, N., Stadler, S., Chow, K.H.: Appl. Phys. Lett. 100, 172403 (2012)

    ADS  Google Scholar 

  14. Tan, C.L., Huang, Y.W., Tian, X.H., Jiang, J.X., Cai, W.: Appl. Phys. Lett. 100, 132402 (2012)

    ADS  Google Scholar 

  15. Zayak, A.T., Adeagbo, W.A., Entel, P., Rabe, K.M.: Appl. Phys. Lett. 88, 2004 (2006)

    Google Scholar 

  16. Xuan, H.C., Cao, Q.Q., Zhang, C.L., Ma, S.C., Chen, S.Y., Wang, D.H., Du Appl, Y.W.: Phys. Lett. 96, 202502 (2010)

    Google Scholar 

  17. Santos, J.D., Sanchez, T., Alvarez, P., Sanchez, M.L., Sánchez Llamazares, J.L., Hernando, B., Escoda, L., Suñol, J.J., Varga, R.: J. Appl. Phys. 103, 07B326 (2008)

    Google Scholar 

  18. Zhang, Y., Zhang, L., Zheng, Q., Zheng, X., Li, M., Du, J., Yan, A.: Sci. Rep. 5, 11010 (2015)

    ADS  Google Scholar 

  19. Singh, N., Borgohain, B., Srivastava, A.K., Dhar, A., Singh, H.K.: Appl. Phys. A Mater. Sci. Process. 122, 237 (2016)

    ADS  Google Scholar 

  20. Auge, A., Teichert, N., Meinert, M., Reiss, G., Hütten, A., Yüzüak, E., Dincer, I., Elerman, Y., Ennen, I., Schattschneider, P.: Phys. Rev. B. 85, 214118 (2012)

    ADS  Google Scholar 

  21. Dunand, D.C., Müllner, P.: Adv. Mater. 23, 216 (2011)

    Google Scholar 

  22. Malygin, G.A.: Tech. Phys. 54, 1782 (2009)

    Google Scholar 

  23. Roytburd, A.L., Kim, T.S., Su, Q., Slutsker, J., Wuttig, M.: Acta Mater. 46, 5095 (1998)

    Google Scholar 

  24. Vishnoi, R., Singhal, R., Kaur, D.: J. Nanopart. Res. 13, 3975 (2011)

    ADS  Google Scholar 

  25. Dubowik, J., Załȩski, K., Gościańska, I., Głowiński, H., Ehresmann, a.: Appl. Phys. Lett. 100, 162403 (2012)

    ADS  Google Scholar 

  26. Behler, A., Teichert, N., Dutta, B., Waske, A., Hickel, T., Auge, A., Hütten, A., Eckert, J.: AIP Adv. 3, 122112 (2013)

    ADS  Google Scholar 

  27. Pandey, S., Quetz, A., Aryal, A., Dubenko, I., Mazumdar, D., Stadler, S., Ali, N.: Magnetochemistry. 3, 3 (2017)

    Google Scholar 

  28. Pandey, S., Us Saleheen, A., Quetz, A., Chen, J.-H., Aryal, A., Dubenko, I., Stadler, S., Ali, N.: AIP Adv. 8, 56408 (2018)

    Google Scholar 

  29. Jing, C., Li, Z., Zhang, H.L., Chen, J.P., Qiao, Y.F., Cao, S.X., Zhang, J.C.: Eur. Phys. J. B. 67, 193 (2009)

    ADS  Google Scholar 

  30. Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., Du, Y.W.: Mater. Sci. Eng. B. 157, 40 (2009)

    Google Scholar 

  31. Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., Frontera, C.: J. Appl. Phys. 113, 53506 (2013)

    Google Scholar 

  32. Fukushima, K., Sano, K., Kanomata, T., Nishihara, H., Furutani, Y., Shishido, T., Ito, W., Umetsu, R.Y., Kainuma, R., Oikawa, K., Ishida, K.: Scr. Mater. 61, 813 (2009)

    Google Scholar 

  33. Machavarapu, R., Jakob, G.: Appl. Phys. Lett. 102, 232406 (2013)

    ADS  Google Scholar 

  34. Vishnoi, R., Kaur, D.: J. Alloys Compd. 509, 2833 (2011)

    Google Scholar 

  35. Modak, R., Raja, M.M., Srinivasan, A.: J. Magn. Magn. Mater. 448, 146 (2018)

    ADS  Google Scholar 

  36. Golub, V.O., Lvov, V.A., Aseguinolaza, I., Salyuk, O., Popadiuk, D., Kharlan, Y., Kakazei, G.N., Araujo, J.P., Barandiaran, J.M., Chernenko, V.A.: Phys. Rev. B. 95(24422), (2017)

  37. Krenke, T., Acet, M., Wassermann, E., Moya, X., Mañosa, L., Planes, A.: Phys. Rev. B. 72, 14412 (2005)

    ADS  Google Scholar 

  38. Tao, Q., Han, Z.D., Wang, J.J., Qian, B., Zhang, P., Jiang, X.F., Wang, D.H., Du, Y.W.: AIP Adv. 2, 042181 (2012)

    ADS  Google Scholar 

  39. Aydogdu, Y., et al.: J. Alloys Compd. 683, 339 (2016)

    Google Scholar 

  40. Sokolovskiy, V.V., Buchelnikov, V.D., Zagrebin, M.A., Entel, P., Sahoo, S., Ogura, M.: Phys. Rev. B. 86, 134418 (2012)

    ADS  Google Scholar 

  41. Kundu, A., Ghosh, S.: J. Phys.: Condens. Matter. 30(015401), (2018)

  42. Czaja, P., Chulist, R., Zywczak, A., Hawelek, L., Przewoznik, J.: Magnetochemistry. 3, 24 (2017)

    Google Scholar 

  43. Borgohain, B., Siwach, P.K., Singh, N., Singh, H.K.: J. Magn. Magn. Mater. 454, 13 (2018)

    Google Scholar 

  44. Getzlaff, M.: Fundamentals of Magnetism. Springer-Verlag Berlin, Heidelberg (2008)

    Google Scholar 

  45. Nayak, A.K., Shekhar, C., Winterlik, J., Gupta, A., Felser, C.: Appl. Phys. Lett. 100, 152404 (2012)

    ADS  Google Scholar 

  46. Sharma, J., Suresh, K.G.: Appl. Phys. Lett. 106, 072405 (2015)

    ADS  Google Scholar 

  47. Pal, D., Ghosh, K., Mandal, K.: J. Mag. Magnet. Mater. 360, 183 (2014)

    ADS  Google Scholar 

  48. Du, Y., Xu, G.Z., Zhang, X.M., Liu, Z.Y., Yu, S.Y., Liu, E.K., Wang, W.H., Wu, G.H.: Europhys. Lett. 103, 37011 (2013)

    ADS  Google Scholar 

  49. Sato, T., Kokado, S., Kosaka, S., Ishikawa, T., Ogawa, T., Tsunoda, M.: Appl. Phys. Lett. 113, 112407 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (BB) would like to thank DST-INSPIRE for providing the INSPIRE fellowship. The authors would like to thank Dr. K. K. Maurya for the HRXRD and Dr. Kedar Singh (JNU) for R-T measurements. The authors are also thankful to Director, USIC-University of Rajasthan, Jaipur for the use of the SQUID magnetometer facility created under the UGC-UPE program ‘Focused Area’ for magnetization measurement. The authors would like to thank Mr. Sandeep Singh for the MFM characterizations.

Funding

Major equipment funding has been provided by the Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nidhi Singh or H. K. Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgohain, B., Siwach, P.K., Singh, N. et al. Magnetic and Magnetotransport Characteristics of Cr-Substituted Ni55Mn34Sn11 Thin Films Grown by Magnetron Sputtering. J Supercond Nov Magn 32, 3295–3304 (2019). https://doi.org/10.1007/s10948-019-5093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5093-5

Keywords

Navigation