Advertisement

Anomalous Hall Effect in Epitaxial Ni–Mn–Ga Thin Films Grown on MgO(001) Substrate during the Martensitic Transformation

  • Fan Li
  • Fenghua ChenEmail author
  • Mingang Zhang
  • Kewei Zhang
  • Wenhe Liu
  • Dongyang Zhao
  • Bo YangEmail author
Original Paper
  • 50 Downloads

Abstract

Epitaxial Ni–Mn–Ga thin films had been grown on MgO (001) by DC magnetron sputtering. And the anomalous Hall effect (AHE), microstructures, magnetism, and magnetoresistance (MR) were investigated. The AHE was measured in the film of Ni47.8Mn30.8Ga21.4 during the martensitic transformation. Meanwhile, the mechanism of the AHE was explained which indicates that the hall resistivity measured in our sample is primarily determined by AHE. The microstructures of the austenite phase and 7M martensite plates at room temperature had been observed on the film of Ni46.7Mn31.7Ga21.6 and Ni47.8Mn30.8Ga21.4, respectively. Magnetic measurements reveal that all films possessed the martensitic transformation during the heating and cooling processes. In addition, the MR showed a negative value during the martensitic transformation which is mainly due to the reduction of spin-dependent scattering.

Keywords

Ni–Mn–Ga thin films Martensitic transformation Magnetoresistance Anomalous Hall effect 

Notes

Funding information

This work is supported by the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, Shanxi Scholarship Council of China (Grant No.2016-092), Open Project of Key Laboratory for Anisotropy and Texture of Materials in Northeastern University (Grant No. ATM20170003), China Postdoctoral Science Foundation funded project (Grant No. 2015M571285), and Scientific and Technological Innovation Projects for Excellent Researchers of Shanxi Province (No. 201805D211042).

References

  1. 1.
    Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N., Tokura, Y.: Observation of the magnon Hall effect. Science. 329(5989), 297–299 (2010).  https://doi.org/10.1126/science.1188260 ADSCrossRefGoogle Scholar
  2. 2.
    Ling, X., Zhou, X., Huang, K., Liu, Y., Qiu, C.W., Luo, H., Wen, S.: Recent advances in the spin Hall effect of light. Reports on progress in physics. Phys Soc. 80(6), 066401 (2017).  https://doi.org/10.1088/1361-6633/aa5397 CrossRefGoogle Scholar
  3. 3.
    Jungwirth, T., Wunderlich, J., Olejnik, K.: Spin Hall effect devices. Nat. Mater. 11(5), 382–390 (2012).  https://doi.org/10.1038/nmat3279 ADSCrossRefGoogle Scholar
  4. 4.
    Bedyaev, A.V., Voloshinskii, A.N., Granovskii, A.B., Ryzhanova, N.V.: Anomalous hall effect in disordered ferromagnetic alloys of the transition metals. Sov. Phys. J. 30(1), 49–60 (1987).  https://doi.org/10.1007/BF00896013 CrossRefGoogle Scholar
  5. 5.
    Branford, W.R., Roy, S.B., Clowes, S.K., Miyoshi, Y., Bugoslavsky, Y.V., Gardelis, S., Giapintzakis, J., Cohen, L.F.: Spin polarisation and anomalous Hall effect in NiMnSb films. J. Magn. Magn. Mater. 272-276, E1399–E1401 (2004).  https://doi.org/10.1016/j.jmmm.2003.12.913 ADSCrossRefGoogle Scholar
  6. 6.
    Glas, M., Ebke, D., Imort, I.M., Thomas, P., Reiss, G.: Anomalous Hall effect in perpendicularly magnetized thin films. J. Magn. Magn. Mater. 333, 134–137 (2013).  https://doi.org/10.1016/j.jmmm.2012.12.040 ADSCrossRefGoogle Scholar
  7. 7.
    Choi, J., Kim, B.-J., Seo, G., Kim, H.-T., Cho, S., Lee, Y.W.: Magnetic field-dependent ordinary Hall effect and thermopower of VO2 thin film. Curr. Appl. Phys. 16, 335–339 (2016).  https://doi.org/10.1016/j.cap.2015.11.023 ADSCrossRefGoogle Scholar
  8. 8.
    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010).  https://doi.org/10.1103/RevModPhys.82.1539 ADSCrossRefGoogle Scholar
  9. 9.
    Ishizuka, H., Nagaosa, N.: Noncommutative quantum mechanics and skew scattering in ferromagnetic metals. Phys. Rev. B. 96(16), (2017).  https://doi.org/10.1103/PhysRevB.96.165202
  10. 10.
    Meng, K.K., Miao, J., Xu, X.G., Zhao, J.H., Jiang, Y.: Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co 2 MnAl film. Phys. Lett. A. 381(13), 1202–1206 (2017).  https://doi.org/10.1016/j.physleta.2017.02.004 ADSCrossRefGoogle Scholar
  11. 11.
    Wang, J.B., Mi, W.B., Wang, L.S., Zeng, D.Q., Chen, Y.Z., Peng, D.L.: Anomalous Hall effect in monodisperse CoO-coated Co nanocluster-assembled films. J. Magn. Magn. Mater. 401, 30–37 (2016).  https://doi.org/10.1016/j.jmmm.2015.10.008 ADSCrossRefGoogle Scholar
  12. 12.
    Li, Y., Liu, E.K., Wu, G.H., Wang, W., Liu, Z.: Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films. J. Appl. Phys. 116(22), 223906 (2014).  https://doi.org/10.1063/1.4903943 ADSCrossRefGoogle Scholar
  13. 13.
    Kooi, C.: Hall effect in ferromagnetics. Phys. Rev. 95(3), 843–844 (1954).  https://doi.org/10.1103/PhysRev.95.843 ADSCrossRefGoogle Scholar
  14. 14.
    Smit, J., Volger, J.: Spontaneous Hall effect in ferromagnetics. Phys. Rev. 92(6), 1576–1577 (1953).  https://doi.org/10.1103/physrev.92.1576.2 ADSCrossRefGoogle Scholar
  15. 15.
    Smit, J.: The spontaneous hall effect in ferromagnetics II. Physica. 24(1), 39–51 (1955).  https://doi.org/10.1016/S0031-8914(58)93541-9 ADSCrossRefGoogle Scholar
  16. 16.
    Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B. 2(11), 4559–4566 (1970).  https://doi.org/10.1103/PhysRevB.2.4559 ADSCrossRefGoogle Scholar
  17. 17.
    Heczko, O., Seiner, H., Stoklasová, P., Sedlák, P., Sermeus, J., Glorieux, C., Backen, A., Fähler, S., Landa, M.: Temperature dependence of elastic properties in austenite and martensite of Ni-Mn-Ga epitaxial films. Acta Mater. 145, 298–305 (2018).  https://doi.org/10.1016/j.actamat.2017.12.011 CrossRefGoogle Scholar
  18. 18.
    Ranzieri, P., Fabbrici, S., Nasi, L., Righi, L., Casoli, F., Chernenko, V.A., Villa, E., Albertini, F.: Epitaxial Ni–Mn–Ga/MgO(100) thin films ranging in thickness from 10 to 100nm. Acta Mater. 61(1), 263–272 (2013).  https://doi.org/10.1016/j.actamat.2012.09.056 CrossRefGoogle Scholar
  19. 19.
    Novikov, A., Sokolov, A., Gan’shina, E.A., Quetz, A., Dubenko, I.S., Stadler, S., Ali, N., Titov, I.S., Rodionov, I.D., Lähderanta, E., Zhukov, A., Granovsky, A.B., Sabirianov, R.: Probing the electronic structure of Ni–Mn–In–Si based Heusler alloys thin films using magneto-optical spectra in martensitic and austenitic phases. J. Magn. Magn. Mater. 432, 455–460 (2017).  https://doi.org/10.1016/j.jmmm.2017.02.012 ADSCrossRefGoogle Scholar
  20. 20.
    Kallmayer, M., Pörsch, P., Eichhorn, T., Schneider, H., Jenkins, C.A., Jakob, G., Elmers, H.J.: Compositional dependence of element-specific magnetic moments in Ni2MnGa films. J. Phys. D. Appl. Phys. 42(8), 084008 (2009).  https://doi.org/10.1088/0022-3727/42/8/084008 ADSCrossRefGoogle Scholar
  21. 21.
    Das, R., Perumal, A., Srinivasan, A.: Estimation of entropy change at the first order martensitic transition in Ni–Mn–X based ferromagnetic shape memory alloys. Phys. B Condens. Matter. 448, 327–329 (2014).  https://doi.org/10.1016/j.physb.2014.03.096 ADSCrossRefGoogle Scholar
  22. 22.
    Aksoy, S., Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91(24), 241916 (2007).  https://doi.org/10.1063/1.2825283 ADSCrossRefGoogle Scholar
  23. 23.
    Wang, J., Jiang, C., Techapiesancharoenkij, R., Bono, D., Allen, S.M., O’Handley, R.C.: Microstructure and magnetic properties of melt spinning Ni–Mn–Ga. Intermetallics. 32, 151–155 (2013).  https://doi.org/10.1016/j.intermet.2012.08.021 CrossRefGoogle Scholar
  24. 24.
    Teichert, N., Boehnke, A., Behler, A., Weise, B., Waske, A., Hütten, A.: Exchange bias effect in martensitic epitaxial Ni-Mn-Sn thin films applied to pin CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 106(19), 192401 (2015).  https://doi.org/10.1063/1.4921080 ADSCrossRefGoogle Scholar
  25. 25.
    Yang, B., Zhang, Y., Li, Z., Qin, G., Zhao, X., Esling, C., Zuo, L.: Insight into variant selection of seven-layer modulated martensite in Ni–Mn–Ga thin films grown on MgO(0 0 1) substrate. Acta Mater. 93, 205–217 (2015).  https://doi.org/10.1016/j.actamat.2015.04.024 ADSCrossRefGoogle Scholar
  26. 26.
    Yang, B., Zhang, Y., Li, Z., Qin, G., Esling, C., Zhao, X., Zuo, L.: Crystallographic orientation of modulated martensite in epitaxially grown Ni–Mn–Ga thin film. Thin Solid Films. 584, 90–93 (2015).  https://doi.org/10.1016/j.tsf.2014.11.073 ADSCrossRefGoogle Scholar
  27. 27.
    Yang, B., Zhang, Y., Li, Z., Qin, G., Esling, C., Zhao, X., Zuo, L.: EBSD characterization of crystallographic orientations and twin interfaces of modulated martensite in epitaxial NiMnGa thin film. IOP Conf. Ser: Mater. Sci. Eng. 82, 012063 (2015).  https://doi.org/10.1088/1757-899x/82/1/012063
  28. 28.
    Yang, B., Li, Z.B., Zhang, Y.D., Qin, G.W., Esling, C., Perroud, O., Zhao, X., Zuo, L.: Microstructural features and orientation correlations of non-modulated martensite in Ni–Mn–Ga epitaxial thin films. Acta Mater. 61(18), 6809–6820 (2013).  https://doi.org/10.1016/j.actamat.2013.07.055 CrossRefGoogle Scholar
  29. 29.
    Mahnke, G.J., Seibt, M., Mayr, S.G.: Microstructure and twinning in epitaxial NiMnGa films. Phys. Rev. B. 78(1), (2008).  https://doi.org/10.1103/PhysRevB.78.012101
  30. 30.
    Kataoka, M.: Resistivity and magnetoresistance of ferromagnetic metals with localized spins. Phys. Rev. B. 63(13), (2001).  https://doi.org/10.1103/PhysRevB.63.134435
  31. 31.
    Li, Y., Xu, G., Ding, B., Liu, E., Wang, W., Liu, Z.: The electronic and magnetic properties and topological Hall effect in hexagonal MnNiGa alloy films by varying Mn contents. J. Alloys Compd. 725, 1324–1329 (2017).  https://doi.org/10.1016/j.jallcom.2017.07.131 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi ProvinceTaiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations