Anomalous Hall Effect in Epitaxial Ni–Mn–Ga Thin Films Grown on MgO(001) Substrate during the Martensitic Transformation

  • Fan Li
  • Fenghua ChenEmail author
  • Mingang Zhang
  • Kewei Zhang
  • Wenhe Liu
  • Dongyang Zhao
  • Bo YangEmail author
Original Paper


Epitaxial Ni–Mn–Ga thin films had been grown on MgO (001) by DC magnetron sputtering. And the anomalous Hall effect (AHE), microstructures, magnetism, and magnetoresistance (MR) were investigated. The AHE was measured in the film of Ni47.8Mn30.8Ga21.4 during the martensitic transformation. Meanwhile, the mechanism of the AHE was explained which indicates that the hall resistivity measured in our sample is primarily determined by AHE. The microstructures of the austenite phase and 7M martensite plates at room temperature had been observed on the film of Ni46.7Mn31.7Ga21.6 and Ni47.8Mn30.8Ga21.4, respectively. Magnetic measurements reveal that all films possessed the martensitic transformation during the heating and cooling processes. In addition, the MR showed a negative value during the martensitic transformation which is mainly due to the reduction of spin-dependent scattering.


Ni–Mn–Ga thin films Martensitic transformation Magnetoresistance Anomalous Hall effect 


Funding information

This work is supported by the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, Shanxi Scholarship Council of China (Grant No.2016-092), Open Project of Key Laboratory for Anisotropy and Texture of Materials in Northeastern University (Grant No. ATM20170003), China Postdoctoral Science Foundation funded project (Grant No. 2015M571285), and Scientific and Technological Innovation Projects for Excellent Researchers of Shanxi Province (No. 201805D211042).


  1. 1.
    Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N., Tokura, Y.: Observation of the magnon Hall effect. Science. 329(5989), 297–299 (2010). ADSCrossRefGoogle Scholar
  2. 2.
    Ling, X., Zhou, X., Huang, K., Liu, Y., Qiu, C.W., Luo, H., Wen, S.: Recent advances in the spin Hall effect of light. Reports on progress in physics. Phys Soc. 80(6), 066401 (2017). CrossRefGoogle Scholar
  3. 3.
    Jungwirth, T., Wunderlich, J., Olejnik, K.: Spin Hall effect devices. Nat. Mater. 11(5), 382–390 (2012). ADSCrossRefGoogle Scholar
  4. 4.
    Bedyaev, A.V., Voloshinskii, A.N., Granovskii, A.B., Ryzhanova, N.V.: Anomalous hall effect in disordered ferromagnetic alloys of the transition metals. Sov. Phys. J. 30(1), 49–60 (1987). CrossRefGoogle Scholar
  5. 5.
    Branford, W.R., Roy, S.B., Clowes, S.K., Miyoshi, Y., Bugoslavsky, Y.V., Gardelis, S., Giapintzakis, J., Cohen, L.F.: Spin polarisation and anomalous Hall effect in NiMnSb films. J. Magn. Magn. Mater. 272-276, E1399–E1401 (2004). ADSCrossRefGoogle Scholar
  6. 6.
    Glas, M., Ebke, D., Imort, I.M., Thomas, P., Reiss, G.: Anomalous Hall effect in perpendicularly magnetized thin films. J. Magn. Magn. Mater. 333, 134–137 (2013). ADSCrossRefGoogle Scholar
  7. 7.
    Choi, J., Kim, B.-J., Seo, G., Kim, H.-T., Cho, S., Lee, Y.W.: Magnetic field-dependent ordinary Hall effect and thermopower of VO2 thin film. Curr. Appl. Phys. 16, 335–339 (2016). ADSCrossRefGoogle Scholar
  8. 8.
    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010). ADSCrossRefGoogle Scholar
  9. 9.
    Ishizuka, H., Nagaosa, N.: Noncommutative quantum mechanics and skew scattering in ferromagnetic metals. Phys. Rev. B. 96(16), (2017).
  10. 10.
    Meng, K.K., Miao, J., Xu, X.G., Zhao, J.H., Jiang, Y.: Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co 2 MnAl film. Phys. Lett. A. 381(13), 1202–1206 (2017). ADSCrossRefGoogle Scholar
  11. 11.
    Wang, J.B., Mi, W.B., Wang, L.S., Zeng, D.Q., Chen, Y.Z., Peng, D.L.: Anomalous Hall effect in monodisperse CoO-coated Co nanocluster-assembled films. J. Magn. Magn. Mater. 401, 30–37 (2016). ADSCrossRefGoogle Scholar
  12. 12.
    Li, Y., Liu, E.K., Wu, G.H., Wang, W., Liu, Z.: Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films. J. Appl. Phys. 116(22), 223906 (2014). ADSCrossRefGoogle Scholar
  13. 13.
    Kooi, C.: Hall effect in ferromagnetics. Phys. Rev. 95(3), 843–844 (1954). ADSCrossRefGoogle Scholar
  14. 14.
    Smit, J., Volger, J.: Spontaneous Hall effect in ferromagnetics. Phys. Rev. 92(6), 1576–1577 (1953). ADSCrossRefGoogle Scholar
  15. 15.
    Smit, J.: The spontaneous hall effect in ferromagnetics II. Physica. 24(1), 39–51 (1955). ADSCrossRefGoogle Scholar
  16. 16.
    Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B. 2(11), 4559–4566 (1970). ADSCrossRefGoogle Scholar
  17. 17.
    Heczko, O., Seiner, H., Stoklasová, P., Sedlák, P., Sermeus, J., Glorieux, C., Backen, A., Fähler, S., Landa, M.: Temperature dependence of elastic properties in austenite and martensite of Ni-Mn-Ga epitaxial films. Acta Mater. 145, 298–305 (2018). CrossRefGoogle Scholar
  18. 18.
    Ranzieri, P., Fabbrici, S., Nasi, L., Righi, L., Casoli, F., Chernenko, V.A., Villa, E., Albertini, F.: Epitaxial Ni–Mn–Ga/MgO(100) thin films ranging in thickness from 10 to 100nm. Acta Mater. 61(1), 263–272 (2013). CrossRefGoogle Scholar
  19. 19.
    Novikov, A., Sokolov, A., Gan’shina, E.A., Quetz, A., Dubenko, I.S., Stadler, S., Ali, N., Titov, I.S., Rodionov, I.D., Lähderanta, E., Zhukov, A., Granovsky, A.B., Sabirianov, R.: Probing the electronic structure of Ni–Mn–In–Si based Heusler alloys thin films using magneto-optical spectra in martensitic and austenitic phases. J. Magn. Magn. Mater. 432, 455–460 (2017). ADSCrossRefGoogle Scholar
  20. 20.
    Kallmayer, M., Pörsch, P., Eichhorn, T., Schneider, H., Jenkins, C.A., Jakob, G., Elmers, H.J.: Compositional dependence of element-specific magnetic moments in Ni2MnGa films. J. Phys. D. Appl. Phys. 42(8), 084008 (2009). ADSCrossRefGoogle Scholar
  21. 21.
    Das, R., Perumal, A., Srinivasan, A.: Estimation of entropy change at the first order martensitic transition in Ni–Mn–X based ferromagnetic shape memory alloys. Phys. B Condens. Matter. 448, 327–329 (2014). ADSCrossRefGoogle Scholar
  22. 22.
    Aksoy, S., Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91(24), 241916 (2007). ADSCrossRefGoogle Scholar
  23. 23.
    Wang, J., Jiang, C., Techapiesancharoenkij, R., Bono, D., Allen, S.M., O’Handley, R.C.: Microstructure and magnetic properties of melt spinning Ni–Mn–Ga. Intermetallics. 32, 151–155 (2013). CrossRefGoogle Scholar
  24. 24.
    Teichert, N., Boehnke, A., Behler, A., Weise, B., Waske, A., Hütten, A.: Exchange bias effect in martensitic epitaxial Ni-Mn-Sn thin films applied to pin CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 106(19), 192401 (2015). ADSCrossRefGoogle Scholar
  25. 25.
    Yang, B., Zhang, Y., Li, Z., Qin, G., Zhao, X., Esling, C., Zuo, L.: Insight into variant selection of seven-layer modulated martensite in Ni–Mn–Ga thin films grown on MgO(0 0 1) substrate. Acta Mater. 93, 205–217 (2015). ADSCrossRefGoogle Scholar
  26. 26.
    Yang, B., Zhang, Y., Li, Z., Qin, G., Esling, C., Zhao, X., Zuo, L.: Crystallographic orientation of modulated martensite in epitaxially grown Ni–Mn–Ga thin film. Thin Solid Films. 584, 90–93 (2015). ADSCrossRefGoogle Scholar
  27. 27.
    Yang, B., Zhang, Y., Li, Z., Qin, G., Esling, C., Zhao, X., Zuo, L.: EBSD characterization of crystallographic orientations and twin interfaces of modulated martensite in epitaxial NiMnGa thin film. IOP Conf. Ser: Mater. Sci. Eng. 82, 012063 (2015).
  28. 28.
    Yang, B., Li, Z.B., Zhang, Y.D., Qin, G.W., Esling, C., Perroud, O., Zhao, X., Zuo, L.: Microstructural features and orientation correlations of non-modulated martensite in Ni–Mn–Ga epitaxial thin films. Acta Mater. 61(18), 6809–6820 (2013). CrossRefGoogle Scholar
  29. 29.
    Mahnke, G.J., Seibt, M., Mayr, S.G.: Microstructure and twinning in epitaxial NiMnGa films. Phys. Rev. B. 78(1), (2008).
  30. 30.
    Kataoka, M.: Resistivity and magnetoresistance of ferromagnetic metals with localized spins. Phys. Rev. B. 63(13), (2001).
  31. 31.
    Li, Y., Xu, G., Ding, B., Liu, E., Wang, W., Liu, Z.: The electronic and magnetic properties and topological Hall effect in hexagonal MnNiGa alloy films by varying Mn contents. J. Alloys Compd. 725, 1324–1329 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi ProvinceTaiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations