Skip to main content
Log in

Phase Diagram and Magnetocaloric Effect of Mn2Tb-Fe2Tb System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Mn2Tb-Fe2Tb phase diagram was drawn, and the crystal structure and magnetocaloric effect of (Mn1-xFex)2Tb (x ≤ 0.5) compounds at the Mn-rich side were systematically studied. X-ray diffraction demonstrates that all these Laves phase compounds crystallize in the cubic MgCu2-type structure. The Rietveld results of XRD shows the cell volume increases with Fe content. The influence of doping effect in (Mn1-xFex)2Tb (x ≤ 0.5) compounds on their magnetic and magnetocaloric properties for all solid solutions is presented. The Curie temperature (Tc) rises from 49 K (for x = 0.0) to 322 K (for x = 0.5), depending on Fe content significantly. Based on Landau’s theory, the magnetization behavior and magnetic transition were analyzed. The magnetocaloric effect (MCE) of (Mn1-xFex)2Tb compounds is also discussed using the Maxwell relation, and the maximum magnetic entropy change ( ΔSMMax) approaches to 10 J kg−1 K−1 at x = 0 under a field ranging from 0 to 5 T. The best relative cooling power (RCP) reaches 535.03 J/kg (x = 0.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith, A., Bahl, C.R.H., Bjørk, R., Engelbrecht, K., Nielsen, K.K., Pryds, N.: Adv. Energy Mater. 2, 1288–1318 (2012)

    Article  Google Scholar 

  2. Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  ADS  Google Scholar 

  3. Cooke, A.H.: Proc. Phys. Soc. 62, 269–278 (1949)

    Article  ADS  Google Scholar 

  4. Hamilton, A.C.S., Lampronti, G.I., Rowley, S.E., Dutton, S.E.: J. Phys. Condens. Matter. 26, 116001 (2014)

    Article  Google Scholar 

  5. Flicstein, J., Schieber, M.: J. Cryst. Growth. 18, 265–268 (1973)

    Article  ADS  Google Scholar 

  6. Phejar, M., Paul-Boncour, V., Bessais, L.: Intermetallics. 18, 2301–2307 (2010)

    Article  Google Scholar 

  7. Nouri, K., Jemmali, M., Walha, S., Zehani, K., Ben Salah, A., Bessais, L.: J. Alloy. Compd. 67, 2440–2448 (2016)

    Google Scholar 

  8. Boutahar, A., Lassri, H., Zehani, K., Bessais, L., Hlil, E.K.: J. Magn. Magn. Mater. 369, 92–95 (2014)

    Article  ADS  Google Scholar 

  9. Dhahri, A., Jemmali, M., Taibi, K., Dhahri, E., Hlil, E.K.: J. Alloy. Compd. 618, 488–496 (2015)

    Article  Google Scholar 

  10. Bejar, M., Dhahri, R., Halouani, F.E., Dhahri, E.: J. Alloy. Compd. 414, 31–35 (2006)

    Article  Google Scholar 

  11. Triki, M., Dhahri, R., Bekri, M., Dhahri, E., Valente, M.A.: J. Alloy. Compd. 509, 9460–9465 (2011)

    Article  Google Scholar 

  12. Lemoine, P., Vernière, A., Malaman, B., Mazet, T.: J. Alloy. Compd. 680, 612–616 (2016)

    Article  Google Scholar 

  13. Zuo, W., Hu, F., Sun, J., Shen, B.G.: J. Alloy. Compd. 575, 162–167 (2013)

    Article  Google Scholar 

  14. Gerasimov, G., Mushnikov, N.V., Inishev, A.A., Terentev, P.B., Gaviko, V.S.: J. Alloys Compd. 680, 359–365 (2016)

    Article  Google Scholar 

  15. Balli, M., Fruchart, D., Gignoux, D.: J. Magn. Magn. Mater. 314, 16–20 (2007)

    Article  ADS  Google Scholar 

  16. Chzhan, V.B., Tereshina, E.A., Mikhailova, A.B., Politova, G.A., Tereshina, I.S., Kozlov, V.I., C’wik, J., Nenkov, K., Alekseeva, O.A., Filimonov, A.V.: J. Magn. Magn. Mater. 432, 461–465 (2017)

    Article  ADS  Google Scholar 

  17. Anikin, M., Tarasov, E., Kudrevatykh, N., Inishev, A., Semkin, M., Volegov, A., Zinin, A.: J. Magn. Magn. Mater. 418, 181–187 (2016)

    Article  ADS  Google Scholar 

  18. Pecharsky, V.K., Gschneidner, K.A., Mudryk, Y., Paudyal, D.: J. Magn. Magn. Mater. 321, 3541–3547 (2009)

    Article  ADS  Google Scholar 

  19. Chumak, A.V., Dhagat, P., Jander, A., Serga, A.A., Hillebrands, B.: Phys. Rev. B. 81, 140404 (2010)

    Article  ADS  Google Scholar 

  20. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Science. 264, 413–415 (1994)

    Article  ADS  Google Scholar 

  21. Wada, H., Tanabe, Y.: Appl. Phys. Lett. 79, 3302–3304 (2001)

    Article  ADS  Google Scholar 

  22. Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R.: Nature. 415, 150–152 (2002)

    Article  ADS  Google Scholar 

  23. Wang, D., Ma, L., Guo, Y.B., Zhou, X.: Mater. Res. Express. 4, 126106 (2017)

    Article  ADS  Google Scholar 

  24. Zhang, W., Levin, E.M., Gschneidner Jr., K.A.: J. Magn. Magn. Mater. 250, 170–178 (2002)

    Article  ADS  Google Scholar 

  25. Zou, J.D., Paudyal, D., Liu, J., Mudryk, Y., Pecharsky, V.K., Gschneidner Jr., K.A.: J. Mater. Chem. C. 3, 2422–2430 (2015)

    Article  Google Scholar 

  26. Brown, P.J., Ouladdiaf, B., Ballou, R.: J. Phys. Condens. Matter. 4, 1103–1113 (1992)

    Article  ADS  Google Scholar 

  27. Oesterreicher, H.J.: Less Common Met. 46, 127–132 (1976)

    Article  Google Scholar 

  28. Kimbal, D.: Acta. Crystallogr. Sec. B. 30, 2791 (1974)

    Article  Google Scholar 

  29. Yang, S., Ren, X.B.: Phys. Rev. B. 77, 014407 (2008)

    Article  ADS  Google Scholar 

  30. Banerjee, S.K.: Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  31. Ćwik, J.: J. Supercond. Nov. Magn. 27(11), 2547–2553 (2014)

    Article  Google Scholar 

  32. Zhang, Y.K., Yang, Y., Xu, X., Hou, L., Ren, Z.M., Li, X., Wilde, G.: J. Phys. D. Appl. Phys. 49, 145002 (2016)

    Article  ADS  Google Scholar 

  33. Franco, V., Conde, A., Romeroenrique, J.M., Blázquez, J.S.: J. Phys. Condens. Matter. 20, 285207 (2008)

    Article  Google Scholar 

  34. Zhang, Y.K., Xu, X., Yang, Y., Hou, L., Ren, Z.M., Li, X.G.: J. Alloy. Compd. 667, 130–133 (2016)

    Article  Google Scholar 

  35. Li, L.W., Yi, Y.L., Su, K.P., Huo, D.X., Pöttgen, R.: J. Mater. Sci. 51, 5421–5426 (2016)

    Article  ADS  Google Scholar 

  36. Li, L., Nishimura, K., Yamane, H.: Appl. Phys. Lett. 94, 1479 (2009)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (51461012), GUET Excellent Graduate Thesis Program (16YJPYSS32), Innovation Project of GUET Graduate Education (2018YJCX84), the Guangxi Key Laboratory of Information Materials (171017-Z, 171022-Z), and the Guangxi Natural Science Foundation (2016GXNSFAA380030, 2016GXNSFGA380001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Ma, L., Li, L. et al. Phase Diagram and Magnetocaloric Effect of Mn2Tb-Fe2Tb System. J Supercond Nov Magn 32, 2895–2902 (2019). https://doi.org/10.1007/s10948-019-5072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5072-x

Keywords

Navigation