Tuning the Ground State and Its Relationship to Zero-Field-Cooled Exchange Bias in NiMnSnAl Alloys

Abstract

The crystal structure, phase transitions, and exchange bias (EB) in Al-doped Ni50Mn36Sn14-xAlx Heusler alloys were investigated. With the increase of Al content, the cell volume decreases gradually, and the martensitic transformation temperature shifts to a higher temperature. Due to the positive “chemical pressure” by Al substitution, the antiferromagnetic interaction strengthens, leading to the decrease of magnetization and the ground state evolution from “reentrant” spin glass to spin glass. Zero-field-cooled EB is triggered in samples exhibiting spin-glass ground state. These results suggest a viable way to design Ni-Mn-Z-based alloys showing zero-field-cooled EB by tuning the exchange interactions and ground state via lattice modulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102(5), 1413–1414 (1956)

    ADS  Article  Google Scholar 

  2. 2.

    Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192(2), 203–232 (1999)

    ADS  Article  Google Scholar 

  3. 3.

    Matsuzono, A., Terada, S., Ono, H., Furukawa, A., Sone, T., Sasaki, S., Kakihara, Y., Takeda, Y., Chiyokubo, N., Matsuki, H.: Study on requirements for shielded current perpendicular to the plane spin valve heads based on dynamic read tests. J. Appl. Phys. 91(10), 7267–7269 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    Kaka, S., Russek, S.E.: Precessional switching of submicrometer spin valves. Appl. Phys. Lett. 80(16), 2958–2960 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    Wang, B.M., Liu, Y., Ren, P., Xia, B., Ruan, K.B., Yi, J.B., Ding, J., Li, X.G., Wang, L.: Large exchange Bias after zero-field cooling from an Unmagnetized state. Phys. Rev. Lett. 106(7), 077203–077206 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    Nayak, A.K., Nicklas, M., Chadov, S., Shekhar, C., Skourski, Y., Winterlik, J., Felser, C.: Large zero-field cooled exchange-Bias in bulk Mn2PtGa. Phys. Rev. Lett. 110(12), 127204–127208 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    Han, Z.D., Qian, B., Wang, D.H., Zhang, P., Jiang, X.F., Zhang, C.L., Du, Y.W.: Magnetic phase separation and exchange bias in off-stoichiometric Ni-Mn-Ga alloys. Appl. Phys. Lett. 103(17), 172403–172407 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    Wang, X., Li, M., Li, J., Yang, J., Ma, L., Zhen, C., Hou, D., Liu, E., Wang, W., Wu, G.: Design of anti-site disorder for tunable spontaneous exchange bias: Mn-Ni-Al alloys as a case. Appl. Phys. Lett. 113(21), 212402 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    Çakır, A., Acet, M., Farle, M.: Exchange bias caused by field-induced spin reconfiguration in Ni-Mn-Sn. Phys. Rev. B. 93(9), 094411–094417 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    Giri, S., Sahoo, R., Dasgupta, P., Poddar, A., Nath, T.: Giant spontaneous exchange bias effect in Sm1. 5Ca0. 5CoMnO6 perovskite. J. Phys. D. Appl. Phys. 49(16), 165002–165008 (2016)

    ADS  Article  Google Scholar 

  11. 11.

    Cui, S., Guo, S., Wang, R., Sun, Z., Xiao, H., Xu, L., Yang, C., Xia, Z.: Positive to negative zero-field cooled exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. Sci. Rep. 6(25703), (2016)

  12. 12.

    Yu, J., Wang, L., Huang, K., Chen, Z., Guo, Y.: Large zero-field cooled exchange bias in Ba1+δMn8O16 nanoribbons. Appl. Surf. Sci. 357, 2343–2346 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    Wang, L.G., Zhu, C.M., Tian, Z.M., Luo, H., Bao, D.L.G.C., Yuan, S.L.: Negative magnetization and zero-field cooled exchange bias effect in Co0.8Cu0.2Cr2O4 ceramics. Appl. Phys. Lett. 107(15), 152406 (2015)

    ADS  Article  Google Scholar 

  14. 14.

    Murthy, J.K., Venimadhav, A.: Giant zero field cooled spontaneous exchange bias effect in phase separated La1.5Sr0.5CoMnO6. Appl. Phys. Lett. 103(25), 252410–252414 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    Lin, S., Shao, D.F., Lin, J.C., Zu, L., Kan, X.C., Wang, B.S., Huang, Y.N., Song, W.H., Lu, W.J., Tong, P.: Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr3. J. Mater. Chem. C. 3(22), 5683–5696 (2015)

    Article  Google Scholar 

  16. 16.

    Lin, J.C., Tong, P., Cui, D.P., Yang, C., Lin, S., Lu, W.J., Wang, B.S., Zhao, B.C., Sun, Y.P.: Exchange bias induced after zero-field cooling in antiperovskite compounds Ga1-xNMn3+x. Phys. Status. Solidi. B. 252(3), 582–588 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    Li, Y., Lu, N., Shi, S., Jin, Y., Han, Z., Lin, Y., Yu, H., Tu, R., Zhang, C., Fang, Y.: Suppression of reentrant spin glass and induced zero-field-cooled exchange bias by lattice contraction in NiMnSbAl alloys. J. Alloys Compd. 766, 791–795 (2018)

    Article  Google Scholar 

  18. 18.

    Li, M., Shen, J., Wang, X., Ma, L., Li, G., Zhen, C., Hou, D., Wang, M.: Enhanced antiferromagnetic interaction-induced spontaneous exchange bias in Mn50Ni40Sn10-xTix Heusler alloys. Intermetallics. 96, 13–17 (2018)

    Article  Google Scholar 

  19. 19.

    Jia, L., Shen, J., Li, M., Wang, X., Ma, L., Zhen, C., Hou, D., Liu, E., Wang, W., Wu, G.: Tuning antiferromagnetic exchange interaction for spontaneous exchange bias in MnNiSnSi system. Apl Mater. 5(12), 126105 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    Tian, F., Cao, K., Zhang, Y., Zeng, Y., Zhang, R., Chang, T., Zhou, C., Xu, M., Song, X., Yang, S.: Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys. Sci. Rep. 6 (2016)

  21. 21.

    Liao, P., Jing, C., Wang, X.L., Yang, Y.J., Zheng, D., Li, Z., Kang, B.J., Deng, D.M., Cao, S.X., Zhang, J.C., Lu, B.: Strongly enhanced antiferromagnetism and giant spontaneous exchange bias in Ni50Mn36Co4Sn10 Heusler alloy. Appl. Phys. Lett. 104(9), 092410–092414 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    Sun, J., Jing, C., Liu, C., Huang, Y., Sun, X., Zhang, Y., Ye, M., Deng, D.: Complicated magnetic phases and presence of exchange Bias in off-stoichiometric Mn50Ni25+xIn25−x Heusler alloys. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4899-x

    Article  Google Scholar 

  23. 23.

    Wang, B.M., Liu, Y., Xia, B., Ren, P., Wang, L.: Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni-Mn-Sn alloys. J. Appl. Phys. 111(4), 043912–043918 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    Aksoy, S., Acet, M., Deen, P.P., Manosa, L., Planes, A.: Magnetic correlations in martensitic Ni-Mn-based Heusler shape-memory alloys: neutron polarization analysis. Phys. Rev. B. 79(21), 212401–212404 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    Enkovaara, J., Heczko, O., Ayuela, A., Nieminen, R.M.: Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa. Phys. Rev. B. 67(21), 212405–212408 (2003)

    ADS  Article  Google Scholar 

  26. 26.

    Li, Z., Jing, C., Chen, J., Yuan, S., Cao, S., Zhang, J.: Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. Appl. Phys. Lett. 91(11), 112505–112507 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias behavior in Ni-Mn-Sb Heusler alloys. Appl. Phys. Lett. 91(7), 072510–072512 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    Bai, V.S., Rajasekharan, T.: Evidence of a critical Mn-Mn distance for the onset of ferromagnetism in NiAs type compounds. J. Magn. Magn. Mater. 42(2), 198–200 (1984)

    ADS  Article  Google Scholar 

  29. 29.

    Dong, S., Chen, J., Han, Z., Fang, Y., Zhang, L., Zhang, C., Qian, B., Jiang, X.: Intermartensitic transformation and enhanced exchange Bias in Pd (Pt)-doped Ni-Mn-Sn alloys. Sci. Rep. 6(25911), (2016)

  30. 30.

    Brown, P.J., Gandy, A.P., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K.U., Oikawa, K., Ouladdiaf, B., Ziebeck, K.R.A.: The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J. Phys. Condens. Matter. 18(7), 2249–2259 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni−Mn−Sn alloys. Phys. Rev. B. 72(1), 014412–014410 (2005)

    ADS  Article  Google Scholar 

  32. 32.

    Chatterjee, S., Giri, S., De, S.K., Majumdar, S.: Reentrant-spin-glass state in Ni2Mn1.36Sn0.64 shape-memory alloy. Phys. Rev. B. 79(9), 092410–092413 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    Ma, L., Wang, W.H., Lu, J.B., Li, J.Q., Zhen, C.M., Hou, D.L., Wu, G.H.: Coexistence of reentrant-spin-glass and ferromagnetic martensitic phases in the Mn2Ni1.6Sn0.4 Heusler alloy. Appl. Phys. Lett. 99(18), 182507–182509 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    Aksoy, S., Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L.s., Planes, A.: Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91(24), 241916–241918 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., Du, Y.W.: Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni-Mn-Sn alloys. Mater. Sci. Eng. B. 157(1–3), 40–43 (2009)

    Article  Google Scholar 

  36. 36.

    Ali, M., Adie, P., Marrows, C.H., Greig, D., Hickey, B.J., Stamps, R.L.: Exchange bias using a spin glass. Nat. Mater. 6(1), 70–75 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    Chen, J., Tu, R., Fang, X., Gu, Q., Zhou, Y., Cui, R., Han, Z., Zhang, L., Fang, Y., Qian, B.: Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon. J. Magn. Magn. Mater. 426, 708–713 (2017)

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (51371004, 61604021, and U1832147), Natural Science Foundation of Jiangsu Educational Department (15KJA430001 and 16KJA150007).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Z. D. Han or B. Qian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, N.L., Li, Y., Wang, H.B. et al. Tuning the Ground State and Its Relationship to Zero-Field-Cooled Exchange Bias in NiMnSnAl Alloys. J Supercond Nov Magn 32, 3243–3249 (2019). https://doi.org/10.1007/s10948-019-5069-5

Download citation

Keywords

  • Heusler alloy
  • Ground state
  • Spin glass
  • Exchange bias