Effect of Different Nano-sized MgO Addition on YBa2Cu3O7-δ Superconductor


The effect of nanoparticle with different size on a superconductor is interesting because the size of the coherence length, penetration depth, and the magnetic flux in a superconductor is in the nanometer range. In this paper, we report the effects of different nano-sized MgO (20, 40, and 100 nm) addition on YBa2Cu3O7-δ(MgO)x for x = 0, 0.1, and 0.2 wt.%. X-ray diffraction patterns indicated a single YBa2Cu3O7 (YBCO) phase where the peaks were shifted to larger angles in the 20- and 40-nm MgO-added samples indicating induced stress of first order in the structure. The electrical resistance versus temperature was measured using the four-probe method. The transition temperature, Tc, for the pure YBCO showed Tc = 90 K and was suppressed to 78–80 K for the 20- and 40-nm MgO-added samples. AC susceptibility (χ = χ′ + iχ″) measurements showed a shift in the peak temperature, Tp, of the imaginary susceptibility χ″ towards lower temperatures for 20-nm MgO-added samples but increased with larger MgO (100 nm). This work showed that smaller nano-sized MgO suppressed the superconducting properties of YBCO more compared with the larger MgO.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Yilmaz, M., Dogan, O.: Mater. Sci. Appl. 2, 1090 (2011)

    Google Scholar 

  2. 2.

    Bartůněk, V., Smrčková, O.: Ceram. - Silikaty. 54, 133 (2010)

    Google Scholar 

  3. 3.

    Salama, A.H., El-Hofy, M., Rammah, Y.S., Elkhatib, M.: Adv. Nat. Sci. Nanosci. Nanotechnol. 7(1), 015011 (2016)

    ADS  Article  Google Scholar 

  4. 4.

    Lee, S.-H., Choi, Y.: J. Nanosci. Nanotechnol. 11, 6219 (2011)

    Article  Google Scholar 

  5. 5.

    Wei, K., Ing, K., Hamdan, M.S., Radiman, S., Abd-Shukor, R.: J. Supercond. Nov. Magn. 31, 2699 (2018)

    Article  Google Scholar 

  6. 6.

    Agail, A., Abd-Shukor, R.: Appl. Phys. A. 112, 501 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    Muhammad-Aizat, K., Abd-Shukor, R.: Sains Malaysiana. 47(7), 1579 (2018)

    Article  Google Scholar 

  8. 8.

    Chen, Q., Fang, M., Jiao, Z., Zhang, Q., Wen, H., Zhao, Z.: Chin. Sci. Bull. 42(4), 285 (1997)

    Article  Google Scholar 

  9. 9.

    Yahya N. A. A., Abd-Shukor, R.: Advan. in Cond. Matt. Phys. Article ID 821073 5 (2013)

  10. 10.

    Wei, W., Schwartz, J., Goretta, K.C., Balachandran, U., Bhargava, A.: Physica C. 298, 279 (1998)

    ADS  Article  Google Scholar 

  11. 11.

    Yahya, A.K., Salleh, Z., Jumali, M.H.: AIP Conf. Proc. 978, 265 (2007)

    ADS  Google Scholar 

  12. 12.

    Yahya, N.A.A., Abd-Shukor, R.: J. Supercond. Nov. Magn. 27(2), 329 (20)

  13. 13.

    Hua, L., Qiao, G.: Chem. Sustain. Dev. 8, 89 (2000)

    Article  Google Scholar 

  14. 14.

    Krustin-Elbaum, Malozemoff, A.P., Yeshurun, Y., Cronemeyer, D.C., Holtzberg, F.: Phys. Rev. B. 39, 2936 (1989)

    ADS  Article  Google Scholar 

  15. 15.

    Worthington, T.K., Gallagher, W.J., Dinger, T.R.: Phys. Rev. Lett. 59, 1160 (1987)

    ADS  Article  Google Scholar 

  16. 16.

    Nur-Akasyah, J., Nur-Shamimie, N.H., Abd-Shukor, R.: J. Supercond. Nov. Magn. 30, 3361 (2017)

    Article  Google Scholar 

Download references


This research was supported by the Ministry of Education, Malaysia under grant no. FRGS/1/2017/SG02/UKM. Addis Ababa University funded this research.

Author information



Corresponding author

Correspondence to R. Abd-Shukor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdulhayi, A., Gholap, A.V. & Abd-Shukor, R. Effect of Different Nano-sized MgO Addition on YBa2Cu3O7-δ Superconductor. J Supercond Nov Magn 32, 2837–2847 (2019). https://doi.org/10.1007/s10948-019-5068-6

Download citation


  • AC susceptibility
  • Transition temperature
  • Critical current density
  • Nano-sized metal oxide