Preparation of RE(DBM)3·Phen (RE=Eu3+,Tb3+) Plate-Loading Fe3O4 Nanospheres and their Magnetic-Optic Bifunctional Property

Abstract

A facile wet chemical method has been used to synthesize bifunctional core-shell nanoparticles of Fe3O4@RE(DBM)3·Phen (RE=Eu3+,Tb3+) showing an interesting combination of magnetic and luminescent properties. This method is convenient, cheap, and efficient. The morphology, structure, luminescent, and magnetic properties of the nanoparticles were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption, fluorescence emission, and superconducting quantum interference device magnetometer (SQUID-VSM). The maximum emission peaks of novel Eu3+ and Tb3+ nanocomposites are at 618 nm and at 514 nm, respectively. And their corresponding special saturation magnetization Ms. are 25.853 emu/g and 24.015 emu/g, respectively. For the nanoparticles, it is shown that there have better magnetic behavior and they may act as red- and green-emitting material with potential application for fluorescent magnetic particle testing. Moreover, this chemical route could be used to obtain the development of several bifunctional systems of other rare earth ions for practical application.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Son, A., Dhirapong, A., Dosev, D.K., Kennedy, I.M., Weiss, R.H., Hristova, K.R.: Anal. Bioanal. Chem. 390, 1829–1835 (2008)

    Article  Google Scholar 

  2. 2.

    Bruchez, M., Moronne, M., Gin, P., Swess, S., Alivisatos, A.P.: Science. 281, 2013–2016 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    Fan, Z., Shelton, M., Singh, A.K., Senapati, D., Khan, S.A., Ray, P.C.: ACS Nano. 6, 1065–1073 (2012)

    Article  Google Scholar 

  4. 4.

    Xu, Z., Li, C., Yang, P., Zhang, C.M.: Cryst. Growth Des. 9, 4752–4758 (2009)

    Article  Google Scholar 

  5. 5.

    Lee, S.S., Riduan, S.N., Erathodiyi, N., Lim, J., Cheong, J.L., Cha, J., Han, Y., Ying, J.Y.: Chem. Eur. J. 18, 7394–7404 (2012)

    Article  Google Scholar 

  6. 6.

    Pires, G.P., Cost, I.F., Brito, H.F., Faustino, W.M., Teotonio, E.S.: Dalton T. 45, 10960–10968 (2016)

    Article  Google Scholar 

  7. 7.

    Tong, L., Shi, J., Liu, D., Li, Q.: J. Phys. Chem. C. 116, 7153–7157 (2012)

    Article  Google Scholar 

  8. 8.

    Yu, M., Chen, G., Liu, J., Tang, B.L., Huang, W.T.: J. Mater. Sci. Techn. 29, 801–805 (2013)

    Article  Google Scholar 

  9. 9.

    Sun, S.H., Zeng, H.: J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Article  Google Scholar 

  10. 10.

    Liang, W., Yi, W., Li, Y., Zhang, Z., Yang, M., Hu, C., Chen, A.A.: Mater. Lett. 62, 284–304 (2010)

    Google Scholar 

  11. 11.

    Hyuk, I.S., Jeong, U., Xia, Y.: Nat. Mater. 4, 671–675 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    Gai, S., Li, C., Yang, P.P., Lin, J.: Chem. Rev. 114, 2343–2389 (2014)

    Article  Google Scholar 

  13. 13.

    Liu, Y.L., Gong, C., Wang, Z.G., Zhang, J.L., Sun, D.H., Hong, G.Y., Ni, J.Z.: Mater. Lett. 97, 187–190 (2013)

    Article  Google Scholar 

  14. 14.

    Khan, L.U., Muraca, D., Brito, H.F., Moscoso-Londono, O., Felinto, M.C.F.C., Pirota, K.R., Teotonio, E.E.S., Malta, O.L.: J. Alloys Compd. 686, 453–466 (2016)

    Article  Google Scholar 

  15. 15.

    Hong, Y., Shu, X., Qin, Y.Q., Cui, J.W., Zhang, Y., Wu, Y.C.: J. Supercond. Nov. Magn. 29, 2367–2371 (2016)

    Article  Google Scholar 

  16. 16.

    Wang, J., Chen, Q., Zeng, C., Hou, B.: Adv. Mater. 16, 137–140 (2004)

    Article  Google Scholar 

  17. 17.

    Mathur, S., Sivakov, V., Shen, H., Barth, S., Cavelius, C., Nilsson, A., Kuhn, P.: Thin Solid Films. 502, 88–93 (2006)

    ADS  Article  Google Scholar 

  18. 18.

    Liu, X., Li, Y.F., Zhu, W.W., Fu, P.F.: CrystEngComm. 15, 4937–4947 (2013)

    Article  Google Scholar 

  19. 19.

    Zhou, Z.H., Wang, J., Liu, X., Chan, H.S.O.: J. Mater. Chem. 11, 1704–1709 (2001)

    Article  Google Scholar 

  20. 20.

    Yu, S.Y., Zhang, H.J., Yu, J.B., Wang, C., Sun, L.N., Shi, W.D.: Langmuir. 23, 7836–7840 (2007)

    Article  Google Scholar 

  21. 21.

    Tong, L.Z., Ren, X.Z., Chen, X.D., Ding, H., Yang, H.: RSC Adv. 4, 22792–22797 (2014)

    Article  Google Scholar 

  22. 22.

    Carlos, L.D., Messaddeq, Y., Brito, H.F., Ferreira, R.A.S., Bermudez, V.D.Z., Ribeiro, S.J.L.: Adv. Mater. 12, 594–598 (2000)

    Article  Google Scholar 

Download references

Funding

This work was supported by a Science and technology support project of the General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (No. 2017QK165), Science and technology support project of the Anhui Bureau of Quality and Technical Supervision (No. 13zj370022 and No. 2018AHQT23), AVIC Institute of Fundamental Technology Innovation Fund (Grant No. JCY2015A001), Fundamental Research Funds for the Central Universities (No. JZ2015HGCH0150).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yong Hong or Enhe Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Shi, H., Wang, E. et al. Preparation of RE(DBM)3·Phen (RE=Eu3+,Tb3+) Plate-Loading Fe3O4 Nanospheres and their Magnetic-Optic Bifunctional Property. J Supercond Nov Magn 32, 3227–3232 (2019). https://doi.org/10.1007/s10948-019-5067-7

Download citation

Keywords

  • RE(DBM)3·Phen (RE=Eu3+,Tb3+)
  • Fe3O4 nanospheres
  • Magnetic property
  • Optical property