Manufacturing, Structure, Properties of MgB2-Based Materials

Abstract

The composition of MgB2-based materials (wires, bulks, and thin films) with high critical current densities, jc, prepared at different pressure (0.1 MPa–2 GPa)—temperature (600–1050 °C) conditions was analyzed by the X-ray and JAMP−9500F Auger spectrometer (after removing the oxidized layers at the sample surfaces by Ar ion etching performed directly in the vacuum chamber of a microscope). Similar regularly distributed inhomogeneities connected with Mg, B, and admixture O content variation on the nanolevel were observed in all types of the MgB2-based materials. The correlations between the character of the material inhomogeneities and the attained superconducting characteristics are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Fluekiger, R. (ed.): Superconducting wires: basics and applications. World Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, Tokyo (2016)

    Google Scholar 

  2. 2.

    Tomsic, M., Rindfleisch, M., Yue, J., McFadden, K., Phillips, J., Sumption, M.D., Bhatia, M., Bohnenstiehl, S., Collings, E.W.: Overview of MgB2 superconductor applications. Int. J. Appl. Ceram. Technol. 4(3), 250–259 (2007)

    Article  Google Scholar 

  3. 3.

    Kovalev, L.K., Ilushin, K.V., Penkin, V.T., Kovalev, K.L., Poltavets, V.N., Koneyev, S.M.A., Modestov, K.A., Gawalek, W., Prikhna, T.A., Akimov, I.I.: An experimental investigation of a reluctance electrical drive with bulk superconducting elements in the rotor at temperature below 20 K. J. Phys. Conf. Ser. 43, 792–795 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    Prikhna, T.A., Gawalek, W., Savchuk, Y.M., Sergienko, N.V., Moshchil, V.E., Sokolovsky, V., Vajda, J., Tkach, V.N., Karau, F., Weber, H., Eisterer, M., Joulain, A., Rabier, J., Chaud, X., Wendt, M., Dellith, J., Danilenko, N.I., Habisreuther, T., Dub, S.N., Meerovich, V., Litzkendorf, D., Nagorny, P.A., Kovalev, L.K., Schmidt, C., Melnikov, V.S., Shapovalov, A.P., Kozyrev, A.V., Sverdun, V.B., Kosa, J., Vlasenko, A.V.: Nanostructural superconducting materials for fault current limiters and cryogenic electrical machines. Acta Phys. Pol. A. 117(1), 7–14 (2010)

    Article  Google Scholar 

  5. 5.

    Mamalis, A.G., Hristoforou, E., Manolakos, D.E., Prikhna, T., Teodorakopoulos, I., Kouzilos, G.: Explosively consolidated powder-in-tube MgB2 superconductor aided by post-thermal treatment. IEEE Trans. Appl. Supercond. 19(1), 20–27 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    Cunnane, D., Kawamura, J.H., Acharya, N., Wolak, M.A., Xi, X.X., Karasik, B.S.: Lownoise THz MgB2 Josephson mixer. Appl. Phys. Lett. 109, 112602 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    Novoselov, E., Cherednichenko, S.: Low noise terahertz MgB2 hot-electron bolometer mixers with an 11 GHz bandwidth. Appl. Phys. Lett. 110, 032601 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    Cunnane, D., Galan, E., Chen, K., Xi, X.: X: planar-type MgB2 SQUIDs utilizing a multilayer process. Appl. Phys. Lett. 103, 212603 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    Galan, E., Melbourne, T., Davidson, B.A., Xi, X.X., Chen, K.: Multilayer MgB2 superconducting quantum interference filter magnetometers. Appl. Phys. Lett. 108, 172602 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    Hong, S.-H., Lee, S.-G., Seong, W.K., Kang, W.N.: Fabrication of MgB2 nanobridge dc SQUIDs by focused ion beam. Physica C. 470, S1036–S1037 (2010)

    Article  Google Scholar 

  11. 11.

    Harada, Y., Kobayashi, K., Yoshizawa, M.: MgB2 SQUID for magnetocardiography. In: Grigorashvili, Y. (ed.) Superconductors - properties, technology, and applications. Tech (2012). https://doi.org/10.5772/38652

    Google Scholar 

  12. 12.

    Lolli, L., Li, T., Portesi, C., Taralli, E., Acharya, N., Chen, K., Rajteri, M., Cox, D., Monticone, E., Gallop, J., Hao, L.: Micro-SQUIDs based on MgB2 nano-bridges for NEMS readout. Supercond. Sci. Technol. 29, 104008–104014 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    Cunnane, D., Chen, K., Xi, X.X.: Superconducting MgB2 rapid single flux quantum toggle flip flop circuit. Appl. Phys. Lett. 102, 222601 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    Goldacker, W., Schlachter, S.I., Reiner, J., Zimmer, S., Nyilas, A.: Mechanical properties of reinforced MgB2 wires. IEEE Trans. Appl. Supercond. 13(2), 3261–3264 (2003). https://doi.org/10.1109/TASC.2003.812218

    ADS  Article  Google Scholar 

  15. 15.

    Serquis, A., Civale, L., Hammon, D.L., Coulter, J.Y., Liao, X.Z., Zhu, Y.T., Peterson, D.E., Mueller, F.M.: Microstructure and high critical current of powder-intube MgB2. Appl. Phys. Lett. 82, 1754 (2003). https://doi.org/10.1063/1.1561572

    ADS  Article  Google Scholar 

  16. 16.

    Rostila, L., Demencik, E., Souc, J., Brisigotti, S., Kováč, P., Polak, M., Grasso, G., Lyly, M., Stenvall, A., Tumino, A., Kopera, Ľ.: Magnesium diboride wires with nonmagnetic matrices—AC loss measurements and numerical calculations. IEEE Trans. Appl. Supercond. 21(3), 3338–3341 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    Gajda, D., Zaleski, A., Morawski, A., Cetner, T., Thong, C.J., Rindfleisch, M.A.: Point pinning centers in SiC doped MgB2 wires after HIP. Supercond. Sci. Technol. 29, 085010 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    Kováč, P., Hušek, I., Melišek, T., Grivel, J.C., Pachla, W., Štrbík, V., Diduszko, R., Homeyer, J., Andersen, N.H.: The role of MgO content in ex situ MgB2 wires. Supercond. Sci. Technol. 17(10), L41 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    Bhalothia, S., Kumar, N., Das, S., Bernhard, C., Varma, G.D.: Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26(9), 095008 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    Prikhna, T.A., Gawalek, W., Savchuk, Y.M., Kozyrev, A.V., Wendt, M., Melnikov, V.S., Turkevich, V.Z., Sergienko, N.V., Moshchil, V.E., Dellith, J., Shmidt, C., Dub, S.N., Habisreuther, T., Litzkendorf, D., Nagorny, P.A., Sverdun, V.B., Weber, H.W., Eisterer, M., Noudem, J., Dittrich, U.: Formation of higher borides during high-pressure synthesis and sintering of magnesium diboride and their positive effect on pinning and critical current density. IEEE Trans. Appl. Supercond. 19(3), 2780–2783 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    Prikhna, T.A., Eisterer, M., Weber, H.W., Gawalek, W., Kovylaev, V.V., Karpets, M.V., Basyuk, T.V., Moshchil, V.E.: Nanostructural inhomogeneities acting as pinning centers in bulk MgB2 with low and enhanced grain connectivity. Supercond. Sci. Technol. 27(4), 044013–044017 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    Prikhna, T., Gawalek, W., Eisterer, M., Weber, H., Monastyrov, M., Sokolovsky, V., Noudem, J., Moshchil, V., Karpets, M., Kovylaev, V., Borimskiy, A., Tkach, V., Kozyrev, A., Kuznietsov, R., Dellith, J., Shmidt, C., Litzkendorf, D., Karau, F., Dittrich, U., Tomsic, M.: The effect of high-pressure synthesis on flux pinning in MgB2-based superconductors. Physica C. 479, 111–114 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    Haigh, S., Kovac, P., Prikhna, T., Savchuk, Y.M., Kilburn, M., Salter, C., Hutchison, J., Grovenor, C.: Chemical interactions in Ti doped MgB2 superconducting bulk samples and wires. Supercond. Sci. Technol. 18(9), 1190–1196 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    Prikhna, T.A., Gawalek, W., Surzhenko, A.B., Moshchil, V.E., Savchuk, Y.M., Melnikov, V.S., Nagorny, P.A., Habisreuther, T., Dub, S.N., Wendt, M., Litzkendorf, D., Dellith, J., Schmidt, C., Krabbes, G., Vlasenko, A.V.: High-pressure synthesis of MgB2 with and without tantalum addition. Physica C. 372–376(3), 1543–1545 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    Hörhager, N., Eisterer, M., Weber, H.W., Prikhna, T., Tajima, T., Nesterenko, V.F.: Ti and Zr doped MgB2 bulk superconductors. J. Phys. Conf. Ser. 43, 500–504 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    Prikhna, T.A., Eisterer, M., Rindfleisch, M., Romaka, V.V., Tomsic, M., Moshchil, V.E., Orlovskyi, M.V., Karpets, M.V., Sverdun, V.B., Ponomaryov, S.S., Shaternik, A.V., Kozyrev, A.V.: Correlations between superconducting characteristics and structure of MgB2-based materials, ab-initio modeling. IEEE Trans. Appl. Supercond. 29(3), 1–7 (2019), Art no. 6200207). https://doi.org/10.1109/TASC.2018.2874415

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Prikhna.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prikhna, T., Eisterer, M., Rindfleisch, M. et al. Manufacturing, Structure, Properties of MgB2-Based Materials. J Supercond Nov Magn 32, 3115–3120 (2019). https://doi.org/10.1007/s10948-019-5062-z

Download citation

Keywords

  • Magnesium diboride bulk
  • Wires
  • Thin films
  • Nanostructure
  • Critical current density
  • Manufacturing parameters

JEL Classification

  • 74.70.Ad
  • 74.25.Sv
  • 74.78-w
  • 74.62.Fj
  • 74.62.Dh