Effects of Bi3+ Substitution on Structural, Morphological, and Magnetic Properties of Cobalt Ferrite Nanoparticles


In this research, the structural, morphological, and magnetic properties of Bi-doped cobalt ferrite (CoFe2-xBixO4) nanoparticles with x = 0.0, 0.05, 1, 0.15, and 0.2, prepared by the sol-gel method, were studied. In order to characterize the samples, several equipment and analyses including thermo-gravimetric and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared spectrometer (FT-IR), and vibrating sample magnetometer (VSM) were used. The average crystallite sizes of the prepared CoFe2-xBixO4 were calculated using the Scherer, UDM, SSP, and Halder-Wagner methods. The average crystallite sizes for the samples were found in the range of 26 to 44 nm, which can be attributed to the grain growth of the particles. FT-IR spectrum showed bands in the range of 430 to 590 cm−1 due to the stretching vibration of an oxygen atom and metal ions (Fe-O), confirming the formation of spinel ferrite. Surface morphology of the samples was studied using FESEM. The VSM results showed that the saturation and remanence magnetizations increased by raising the doping values up to x = 0.1. The Curie temperature of the cobalt nanoferrites was determined using Faraday’s technique. The highest Curie temperature was found to be 580 °C for the undoped sample.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig. 8


  1. 1.

    Subramanian, A.P., Jaganathan, S.K., Manikandan, A., Pandiaraj, K.N., Gomathi, N., Supriyanto, E.: Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv. 6, 48294–48314 (2016)

    Google Scholar 

  2. 2.

    Abraham, A.G., Manikandan, A., Manikandan, E., Jaganathan, S.K., Baykal, A.: Enhanced opto-magneto properties of Ni x Mg1–x Fe2O4 (0.0≤ x≤ 1.0) ferrites nano-catalysts. J. Nanoelectron. Optoelectron. 12, 1326–1333 (2017)

    Google Scholar 

  3. 3.

    Hema, E., Manikandan, A., Karthika, P., Durka, M., Antony, S.A., Venkatraman, B.R.: Magneto-optical properties of reusable spinel NixMg1-xFe2O4 (0.0 < x < 1.0) nano-catalysts. J. Nanosci. Nanotechnol. 16, 7325–7336 (2016)

    Google Scholar 

  4. 4.

    Chitra, K., Reena, K., Manikandan, A., Antony, S.A.: Antibacterial studies and effect of poloxamer on gold nanoparticles by zingiber of ficinale extracted green synthesis. J. Nanosci. Nanotechnol. 15, 4984–4991 (2015)

    Google Scholar 

  5. 5.

    Meenatchi, B., Renuga, V., Manikandan, A.: Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation. Korean J. Chem. Eng. 33, 934–944 (2016)

    Google Scholar 

  6. 6.

    Hashhash, A., Kasar, M.: Influence of ce-substitution on structural, magnetic and electrical properties of cobalt ferrite nanoparticles. J. Electron. Mater. 45(1), 321–329 (2016)

    Google Scholar 

  7. 7.

    Mousavi Ghahfarokhi, S.E., Hosseini, S., Zargar, S.M.: Fabrication and investigation of the magnetic and dielectric properties of M-type strontium hexaferrite nanoparticles. Iranian J. Crystallogr. Mineral. 23(2), 359–372 (2015)

    Google Scholar 

  8. 8.

    Zhiqiang, Z., Li, G., Haixia, Y., Qiang, L., Feng, Y.: Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014)

    Google Scholar 

  9. 9.

    Manikandan, A., Durka, M., Selvi, M.A., Antony, S.A.: Sesamumindicum plant extracted microwave combustion synthesis and opto-magnetic properties of spinel MnxCo1-xAl2O4 nano-catalysts. J. Nanosci. Nanotechnol. 16, 448–456 (2016)

    Google Scholar 

  10. 10.

    Slimani, Y., Baykal, A., Manikandan, A.: Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn. Mater. 458, 204–212 (2018)

    ADS  Google Scholar 

  11. 11.

    Jacintha, A.M., Manikandan, A., Chinnaraj, K., Antony, S.A.: Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. J. Nanosci. Nanotechnol. 15, 9732–9740 (2015)

    Google Scholar 

  12. 12.

    Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Bappi, P., SankarDhar, S., Habibi, A., Manikandan, A., Ramadoss, G.: Fine cutting edge shaped Bi2O3rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J. Colloid Interface Sci. 498, 449–459 (2017)

    ADS  Google Scholar 

  13. 13.

    Yüksel, K.: Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015)

    Google Scholar 

  14. 14.

    Maria Lumina Sonia, M., Anand, S., Maria Vinosel, V., AsisiJanifer, M., Pauline, S., Manikandan, A.: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    ADS  Google Scholar 

  15. 15.

    Asiri, S., Güner, S., Demir, A., Yildiz, A., Manikandan, A., Baykal, A.: Synthesis and magnetic characterization of Cu substituted barium hexaferrites. J. Inorg. Organomet. Polym. Mater. 28, 1065–1071 (2018)

    Google Scholar 

  16. 16.

    Meenatchi, B., Sathiya, L.V., Manikandan, A., Renuga, V., Sharmila, A., Nandhine, A.K., Kumar Jaganathan, S.: Protic ionic liquid assisted synthesis and characterization of ferromagnetic cobalt oxide nanocatalyst. J. Inorg. Organomet. Polym. Mater. 27, 446–454 (2017)

    Google Scholar 

  17. 17.

    Elayakumar, J., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Thilak, R., Jaganathan, S.K., Baykal, A.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    ADS  Google Scholar 

  18. 18.

    Manikandan, A., Sridhar, R., Antony, S.A., Ramakrishna, S.: A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014)

    ADS  Google Scholar 

  19. 19.

    Zaki, H.M., Saleh, H., Hashhash, A.: Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures. J. Magn. Magn. Mater. 401, 1027–1032 (2016)

    ADS  Google Scholar 

  20. 20.

    Ghezelbash, S., Yousefi, M., Hossainisadr, M., Baghshahi, S.: Structural and magnetic properties of Sn4+ doped strontium hexaferrites prepared via sol–gel auto-combustion method. IEEE Trans. Magn. 54, 64–70 (2018)

    Google Scholar 

  21. 21.

    Thakur, A., Sharma, P., Thakur, P.: Effect of high spin Mn2+/Mn3+ ions on microstructural, optical, magnetic and electrical properties of hydrothermally prepared Ni–Mg nanoferrites. Int. J. Mod. Phys. B29, 155–163 (2015)

    Google Scholar 

  22. 22.

    Qiao, W., Li, X., Liu, M., Li, T., Peng, H.X.: La and Co substituted M-type barium ferrites processed by sol–gel combustion synthesis. Mater. Res. Bull. 48, 4449–4453 (2013)

    Google Scholar 

  23. 23.

    An, G.H., Hwang, T.Y., Kim, J., Kim, J.B., Kang, N., Kim, S., Choi, Y.M., Choa, Y.H.: Barium hexaferrite nanoparticles with high magnetic properties by salt assisted ultrasonic spraypyrolysis. J. Alloy. Compd. 583, 145–151 (2014)

    Google Scholar 

  24. 24.

    Mousavi Ghahfarokhi, S.E., Alikhani, K., Zargar Shoushtari, M.: The effect of annealing temperature on structural, magnetic and dielectric properties of PbFe11CoO19 nanoparticles. Iranian J. Crystallogr. Mineral. 25(3), 655–666 (2017)

    Google Scholar 

  25. 25.

    Kiani, E., Rozatian, A.S.H., Yousefi, M.H.: Structural, magnetic and microwave absorption properties of SrFe12-2x(Mn0.5Cd0.5Zr)xO19 ferrite. J. Magn. Magn. Mater. 361, 25–29 (2014)

    ADS  Google Scholar 

  26. 26.

    Mousavi Ghahfarokhi, S.E., Ranjbar, F., Zargar Shoushtari, M.: A study of the properties of SrFe12-xCoxO19 nanoparticles. J. Magn. Magn. Mater. 349, 80–87 (2014)

    ADS  Google Scholar 

  27. 27.

    Najafi Birgani, A., Niyaifar, M., Hasanpour, A.: Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)

    ADS  Google Scholar 

  28. 28.

    Motevallizade, L., Sepahvand, F.: Investigation of the effect of annealing temperature on lattice micro strains of SnO2nano particles prepared by sol-gel method. Iranian J. Crystallogr. Mineral. 24, 493–502 (2016)

    Google Scholar 

  29. 29.

    Taraka, Y., Venkateswara, K., Kumar, S., Kumari, B.: X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)

    Google Scholar 

  30. 30.

    Gholizadeh, A.: X-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure. J. Adv. Mater. Process. 3, 71–83 (2015)

    Google Scholar 

  31. 31.

    Panda, R.K., Muduli, R., Jayarao, G., Sanyal, D., Behera, D.: Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Compd. 669, 19–28 (2016)

    Google Scholar 

  32. 32.

    Silva, W.M.S., Ferriera, N.S., Soares, J.M., Da Silva, R.B., Macedo, M.A.: Investigation of structural and magnetic properties of nanocrystalline Mn-doped SrFe12O19 prepared by proteic sol–gel process. J. Magn. Magn. Mater. 395, 263–270 (2015)

    ADS  Google Scholar 

  33. 33.

    Qingyao, W., Zhenjiang, Y., Yuewen, W., Zihan, G., Hongde, X.: The magnetic and photocatalytic properties of nanocomposites SrFe12O19/ZnFe2O4. J. Magn. Magn. Mater. 465, 1–8 (2018)

    Google Scholar 

  34. 34.

    Khademi, F., Poorbafrani, A., Kameli, P., Salamati, H.: Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Nov. Magn. 25, 525–531 (2012)

    Google Scholar 

  35. 35.

    Naderi, E., Naseri, M., Souri, D.: The effect of SiO2 and TiO2 nanoparticles on physical properties of SrFe12O19 nanoparticle. Curr. Appl. Phys. 18, 469–476 (2018)

    ADS  Google Scholar 

  36. 36.

    Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V., Jadhav, K.M.: Structural, magnetic and dialectical properties of Al-Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016)

    ADS  Google Scholar 

  37. 37.

    Bozinaro, M.A.P., Ferriera, N.S., Cunha, F., Macedo, M.A.: Hopkinson effect, structural and magnetic properties of M-type Sm3+- doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceram. Int. 42, 5865–5872 (2016)

    Google Scholar 

  38. 38.

    Ailin, X., Shunkai, L., Chuangui, J., Shubing, S.: Microstructure and magnetic transition in Cr-substituted Mg–Zn spinel ferrite powders prepared via hydrothermal method. Mater. Electron. 24, 4166–4169 (2013)

    Google Scholar 

  39. 39.

    Manikandan, A., Durka, M., Seevakan, K., Arul Antony, S.: A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2O4 (0.0 ≤ x ≤ 0.5) nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015)

    Google Scholar 

  40. 40.

    Shyam, K., Rajaram, S., Santosh, S., Manohar, K., Alothmanc, Z., Hui, B.: Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384–6390 (2015)

    Google Scholar 

  41. 41.

    Wu, X., Ding, Z., Song, N., Li, L., Wang, W.: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 42, 4246–4255 (2016)

    Google Scholar 

  42. 42.

    Hema, E., Manikandan, A., Karthika, P., Antony, S.A., Venkatraman, B.R.: A novel synthesis of Zn2+-doped CoFe2O4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn. 28, 2539–2552 (2015)

    Google Scholar 

  43. 43.

    Abraham, A.G., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykal, A., Sri Renganathan, P.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    ADS  Google Scholar 

  44. 44.

    Routray, K., Dirtha, S., Dhrubananda, B.: Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications. Mater. Res. Bull. 110, 126–134 (2019)

    Google Scholar 

  45. 45.

    Manikandan, A., Durka, M., Antony, S.A.: Role of Mn2+ Doping on structural, morphological, and Opto-magnetic properties of spinel Mn x Co1−x Fe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nanocatalysts. J. Supercond. Nov. Magn. 28, 2047–2058 (2015)

    Google Scholar 

  46. 46.

    Mozaffari, M., Amighian, J., Darsheshdar, E.: Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method. J. Magn. Magn. Mater. 350, 19–22 (2014)

    ADS  Google Scholar 

  47. 47.

    Mozaffari, M., Masoudi, H.: Zinc ferrite nanoparticles: new preparation method and magnetic properties. J. Supercond. Nov. Magn. 27, 2563–2567 (2014)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. E. Mousavi Ghahfarokhi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghahfarokhi, S.E.M., Ahmadi, M. & Kazeminezhad, I. Effects of Bi3+ Substitution on Structural, Morphological, and Magnetic Properties of Cobalt Ferrite Nanoparticles. J Supercond Nov Magn 32, 3251–3263 (2019). https://doi.org/10.1007/s10948-019-5058-8

Download citation


  • CoFe2-xBixO4 nanoparticles
  • Structural properties
  • Magnetic properties
  • Curie temperature