Hydrogen Effect on Electron-Phonon Interactions in L10 FePd


The effect of H position in L10FePd magnetic equiatomic layered structure on electron-phonon interactions is studied via ab initio pseudopotentials density functional approach in the general gradient approximation. The structures investigated are L10FePd (parent structure), and the specific hydrides 2(FePd)1H (H@Fe layer) and 2(FePd)2H (H@Pd layer). At ground state (0 K), electronic band structure results demonstrate the emergence of Fermi surfaces (FS) in topologies of small isolated multipockets in the hydrides. Using the harmonic approximation I find the phonon energy dispersion of parent and H@Fe simple and classical but for H@Pd complex. I linked this latter structure to its topology of FS, known as Kohn anomaly. Using McMillan-Eliashberg model, I get superconducting transition temperature (Tc) values ≈ 0.00 K, 3.48 K, and 19.75 K for the parent, H@Fe and H@Pd respectively. Therefore, these hypothetical hydrides prove that H position in the structure has a direct influence on Tc values and consequently the suppression of magnetism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Mohtadi, R., Orimo, S.I.: The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2(3), 16091 (2017)

    ADS  Article  Google Scholar 

  2. 2.

    Gor’kov, L.P., Kresin, V.Z.: Colloquium: high pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90(1), 011001 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525(7567), 73 (2015)

    ADS  Article  Google Scholar 

  4. 4.

    Li, Y., Hao, J., Liu, H., Li, Y., Ma, Y.: The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140(17), 174712 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    Burger, J.P.: Electron-phonon coupling and superconductivity in metal-hydrogen systems. J. Less Common Met. 101, 53–67 (1984)

    Article  Google Scholar 

  6. 6.

    Shamp, A., Zurek, E.: Superconductivity in hydrides doped with main group elements under pressure. Novel Superconducting Materials. 3(1), 14–22 (2017)

    Article  Google Scholar 

  7. 7.

    Skoskiewicz, T.: Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems. Phys. Status Solidi A. 11(2), K123 (1972)

    ADS  Article  Google Scholar 

  8. 8.

    Tripodi, P., Di Gioacchino, D., Vinko, J.D.: Magnetic and transport properties of PdH: intriguing superconductive observations. Braz. J. Phys. 34(3B), 1177–1184 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    Ganguly, B.N.: High frequency local modes, superconductivity and anomalous isotope effect in PdH (D) systems. Z. Phys. A Hadrons Nucl. 265(5), 433–439 (1973)

    Article  Google Scholar 

  10. 10.

    Klein, B.M., Cohen, R.E.: Anharmonicity and the inverse isotope effect in the palladium-hydrogen system. Phys. Rev. B. 45(21), 12405 (1992)

    ADS  Article  Google Scholar 

  11. 11.

    Villa-Cortés, S., Baquero, R.: On the calculation of the inverse isotope effect in PdH (D): a Migdal-Eliashberg theory approach. arXiv preprint arXiv:1801.03788 (2018)

  12. 12.

    Errea, I., Calandra, M., Mauri, F.: First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. Phys. Rev. Lett. 111(17), 177002 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Syed, H. M., Gould, T. J., Webb, C. J., Gray, E.: Superconductivity in palladium hydride and deuteride at 52–61 Kelvin. arXiv preprint arXiv:1608.01774 (2016)

  14. 14.

    Nguyen, D.C., Chu, C.C., Lee, C.H., Lai, W.C., Chang, C.S.: Coercivity enhancement of FePd thin films prepared by the post-annealing of off-stoichiometric magnetron-sputtered multilayers. J. Appl. Phys. 123(7), 073901 (2018)

    ADS  Article  Google Scholar 

  15. 15.

    Hsu, W.H., Bell, R., Victora, R.H.: Ultra-low write energy composite free layer spin-orbit torque MRAM. IEEE Trans. Magn. 99, 1–5 (2018)

    Article  Google Scholar 

  16. 16.

    Jech, A.E., Abeledo, C.R.: Hyperfine fields in FePdH alloys. J. Phys. Chem. Solids. 28(8), 1371–1374 (1967)

    ADS  Article  Google Scholar 

  17. 17.

    Carlow, J.S., Meads, R.E.: Mössbauer measurement of Curie temperatures and X-ray measurement of lattice parameters of some iron-palladium-hydrogen alloys. J. Phys. C Solid State Phys. 2(11), 2120 (1969)

    ADS  Article  Google Scholar 

  18. 18.

    Carlow, J.S., Meads, R.E.: The iron-palladium-hydrogen alloy system. (Mossbauer studies). J. Phys. F: Met. Phys. 2(5), 982 (1972)

    ADS  Article  Google Scholar 

  19. 19.

    Van Dongen, J.C.M., Mydosh, J.A.: Depression of the superconducting transition temperature of palladium hydride with magnetic impurities: Fe and Cr. Z. Phys. Chem. 116(116), 149–155 (1979)

    Article  Google Scholar 

  20. 20.

    Boufelfel, A.: Ab initio calculations of L10 FePdH multilayered structure. Int. J. Hydrog. Energy. 41(8), 4719–4728 (2016)

    Article  Google Scholar 

  21. 21.

    Giustino, F.: Electron-phonon interactions from first principles. Rev. Mod. Phys. 89(1), 015003 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Alarco, J.A., Talbot, P.C., Mackinnon, I.D.: A complete and accurate description of superconductivity of AlB 2-type structures from phonon dispersion calculations. J. Supercond. Nov. Magn. 31(3), 727–731 (2018)

    Article  Google Scholar 

  23. 23.

    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21(39), 395502 (2009)

    Article  Google Scholar 

  24. 24.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Article  Google Scholar 

  25. 25.

    Marzari, N., Vanderbilt, D., De Vita, A., Payne, M.C.: Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    Baroni, S., De Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515 (2001)

    ADS  Article  Google Scholar 

  27. 27.

    Eliashberg, G.M.: Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP. 11(3), 696–702 (1960)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Allen, P.B., Dynes, R.C.: Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B. 12(3), 905 (1975)

    ADS  Article  Google Scholar 

  29. 29.

    Hosono, H., Kuroki, K.: Iron-based superconductors: current status of materials and pairing mechanism. Physica C: Superconductivity and its Applications. 514, 399–422 (2015)

    ADS  Article  Google Scholar 

  30. 30.

    Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials. 1(1), (2015)

  31. 31.

    Bianconi, A., Jarlborg, T.: Superconductivity above the lowest earth temperature in pressurized sulfur hydride. EPL (Europhysics Letters). 112(3), 37001 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    Quan, Y., Pickett, W.E.: Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Phys. Rev. B. 93(10), 104526 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    Mehaddene, T., Kentzinger, E., Hennion, B., Tanaka, K., Numakura, H., Marty, A., et al.: Lattice dynamics and migration enthalpies in CoPt3 and FePd. Phys. Rev. B. 69(2), 024304 (2004)

    ADS  Article  Google Scholar 

  34. 34.

    Kohn, W.: Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2(9), 393 (1959)

    ADS  Article  Google Scholar 

  35. 35.

    Miiller, A.P.: Real and virtual Kohn effect in palladium by inelastic neutron scattering. Can. J. Phys. 53(22), 2491–2501 (1975)

    ADS  Article  Google Scholar 

  36. 36.

    Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., Robertson, J.: Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93(18), 185503 (2004)

    ADS  Article  Google Scholar 

  37. 37.

    Stewart, D.A.: Ab initio investigation of phonon dispersion and anomalies in palladium. New J. Phys. 10(4), 043025 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    Kim, D.Y., Scheicher, R.H., Mao, H.K., Kang, T.W., Ahuja, R.: General trend for pressurized superconducting hydrogen-dense materials. Proc. Natl. Acad. Sci. 107(7), 2793–2796 (2010)

    ADS  Article  Google Scholar 

  39. 39.

    McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)

    ADS  Article  Google Scholar 

  40. 40.

    Dynes, R.C.: McMillan's equation and the Tc of superconductors. Solid State Commun. 10(7), 615–618 (1972)

    ADS  Article  Google Scholar 

  41. 41.

    Bazhirov, T., Cohen, M.L.: Spin-resolved electron-phonon coupling in FeSe and KFe2Se2. Phys. Rev. B. 86(13), 134517 (2012)

    ADS  Article  Google Scholar 

  42. 42.

    Bazhirov, T., Cohen, M.L.: Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer. J. Phys. Condens. Matter. 25(10), 105506 (2013)

    ADS  Article  Google Scholar 

  43. 43.

    Baroni, S., Giannozzi, P., Isaev, E.: Thermal properties of materials from ab-initio quasi-harmonic phonons. arXiv preprint arXiv:1112.4977 (2011)

  44. 44.

    Boufelfel, A., Emrick, R.M., Falco, C.M.: Magnetism of Fe/Pd superlattices. Phys. Rev. B. 43(16), 13152 (1991)

    ADS  Article  Google Scholar 

Download references


This work was supported by the Algerian ministry of higher education and scientific research, CNEPRU program, under contract number B00L02UN2401 2015 0004

Author information



Corresponding author

Correspondence to Ahmed Boufelfel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 1568 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boufelfel, A. Hydrogen Effect on Electron-Phonon Interactions in L10 FePd. J Supercond Nov Magn 32, 3125–3133 (2019). https://doi.org/10.1007/s10948-019-5057-9

Download citation


  • Superconductivity
  • Ferromagnetism
  • L10 FePd hydrides
  • Fermi surface
  • Phonons, Kohn anomaly