Structural, Optical, Dielectric, and Magnetic Characteristics of Nd Ions Substituted BaFe11(Sn0.5Mg0.5)xO19 M-Type Hexaferrite via Co-precipitation

Abstract

Nanoparticles (NPs) of barium hexaferrite were synthesized by a chemical co-precipitation technique in an aqueous solution with a nominal composition of BaFe11(Sn0.5Mg0.5)1−xNdxO19 (x = 0, 0.5, 1). XRD and FTIR analyses were performed to study the crystal structure of the magnetic powders (MPs) in order to obtain details on the hexaferrite structure. Grain morphology and elemental composition were assessed by SEM and EDS, respectively, and nano-sized hexagonal platelet-like structures in all MPs were demonstrated. All of the structural parameters such as “a”, “c”, V(cell) and Dx have been altered with successful incorporation of Nd into hexagonal lattices, thereby the band gap Eg first increased x ≤ 0.5 then decreased up to x = 1 (i.e., drawn via a Tauc plot) from 1.53–1.82 eV. The measurements of dielectric properties depict relaxation behavior at higher frequencies. The dielectric measurements increase with increased hexaferrite. Furthermore, the magnetic properties of all MPs were examined by VSM at room temperature (RT). The saturation magnetization (Ms), remnant magnetization (Mr), and coercivity (Hc) were linearly decreased by the SnMg content, whereas an increasing trend appeared with the additional Nd content. However, the squareness ratio increased with an increase in the content (x). These outcomes make this substitution an excellent candidate for multiple applications such as optical, electrical-based devices, circulators, and recording materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  2. 2.

    Abbas, W., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Azhar Khan, M., Akhtar, M.N., Ahmad, M.: Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol-gel autocombustion for a variety of applications. J. Magn. Magn. Mater. 374, 187–191 (2015). https://doi.org/10.1016/j.jmmm.2014.08.029

    ADS  Article  Google Scholar 

  3. 3.

    Ashraf, G.M.G.A., Zhang, L., Abbas, W.: Synthesis and characterizations of Al-Sm substituted Ba-Sr M-type hexagonal ferrite nanoparticles via sol-gel route. Ceram. Int. 44, 1–8 (2018). https://doi.org/10.1016/j.ceramint.2018.07.096

    Article  Google Scholar 

  4. 4.

    Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V., Jadhav, K.M.: Structural, magnetic and dielectrical properties of Al-Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016). https://doi.org/10.1016/j.molstruc.2015.11.004

    ADS  Article  Google Scholar 

  5. 5.

    Poorbafrani, A., Kameli, P., Salamati, H.: Structural, magnetic and electromagnetic wave absorption properties of SrFe12O19/ZnO nanocomposites. J. Mater. Sci. 48, 186–191 (2013). https://doi.org/10.1007/s10853-012-6727-1

    ADS  Article  Google Scholar 

  6. 6.

    Auwal, I.A., Baykal, A., Güner, S., Sertkol, M., Sözeri, H.: Magneto-optical properties BaBixLaxFe12-2xO19(0.0≤x≤0.5) hexaferrites. J. Magn. Magn. Mater. 409, 92–98 (2016). https://doi.org/10.1016/j.jmmm.2016.02.093

    ADS  Article  Google Scholar 

  7. 7.

    Chawla, S.K., Meena, S.S., Kaur, P., Mudsainiyan, R.K., Yusuf, S.M.: Effect of site preferences on structural and magnetic switching properties of CO-Zr doped strontium hexaferrite SrCoxZrxFe(12-2x)O19. J. Magn. Magn. Mater. 378, 84–91 (2015). https://doi.org/10.1016/j.jmmm.2014.10.168.

    ADS  Article  Google Scholar 

  8. 8.

    Cheng, Y., Ren, X.: Enhanced microwave absorbing properties of La3+ substituting barium hexaferrite. J. Supercond. Nov. Magn. 29, 803–808 (2016). https://doi.org/10.1007/s10948-015-3355-4

    Article  Google Scholar 

  9. 9.

    Belec, B., Dražić, G., Gyergyek, S., Podmiljšak, B., Goršak, T., Komelj, M., Nogués, J., Makovec, D.: Novel Ba-hexaferrite structural variations stabilized on the nanoscale as building blocks for epitaxial bi-magnetic hard/soft sandwiched maghemite/hexaferrite/maghemite nanoplatelets with out-of-plane easy axis and enhanced magnetization. Nanoscale. 9, 17551–17560 (2017). https://doi.org/10.1039/C7NR05894B

    Article  Google Scholar 

  10. 10.

    Dimitrov, T.K.V.: Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163, 100–112 (2002)

    ADS  Article  Google Scholar 

  11. 11.

    Fang, H.C., Ong, C.K., Zhang, X.Y., Li, Y., Wang, X.Z., Yang, Z.: Low temperature characterization of nano-sized BaFe12-2xZnxSnxO19 particles. J. Magn. Magn. Mater. 191, 277–281 (1999)

    ADS  Article  Google Scholar 

  12. 12.

    Jamalian, M., Ghasemi, A., Pourhosseini Asl, M.J.: Magnetic and microwave properties of barium hexaferrite ceramics doped with Gd and Nd. J. Electron. Mater. 44, 2856–2861 (2015). https://doi.org/10.1007/s11664-015-3720-x

    ADS  Article  Google Scholar 

  13. 13.

    Xie, Y., Liu, J., Hong, X., Duan, J., Le, Z., Gao, Y., Ling, Y., Huang, Y., Qin, Y., Zhong, R., Yang, F.: Synthesis and magnetic properties of BaFe11.92La(0.08-x)NdxO19(x=0, 0.02, 0.04, 0.06, 0.08) via gel-precursor self-propagating combustion process. J. Magn. Magn. Mater. 377, 172–175 (2015). https://doi.org/10.1016/j.jmmm.2014.10.060

    ADS  Article  Google Scholar 

  14. 14.

    Kaur, T., Kumar, S., Bhat, B.H., Want, B., Srivastava, A.K.: Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 119, 1531–1540 (2015). https://doi.org/10.1007/s00339-015-9134-z

    ADS  Article  Google Scholar 

  15. 15.

    Luo, J.: Structural and magnetic properties of Nd-doped strontium ferrite nanoparticles. Mater. Lett. 80, 162–164 (2012). https://doi.org/10.1016/j.matlet.2012.04.107

    Article  Google Scholar 

  16. 16.

    Tsutaoka, T., Koga, N.: Magnetic phase transitions in substituted barium ferrites BaFe12-x(Ti0.5Co0.5)xO19(x=0-5). J. Magn. Magn. Mater. 325, 36–41 (2013). https://doi.org/10.1016/j.jmmm.2012.07.050.

    ADS  Article  Google Scholar 

  17. 17.

    Zhu, J., Gui, Z., Ding, Y.: A simple route to lanthanum hydroxide nanorods. Mater. Lett. 62, 2373–2376 (2008). https://doi.org/10.1016/j.matlet.2007.12.002

    Article  Google Scholar 

  18. 18.

    Rahman, T., Vargas, M., Ramana, C.V.: Structural characteristics , electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014). https://doi.org/10.1016/j.jallcom.2014.07.182

    Article  Google Scholar 

  19. 19.

    Ajmal, M., Islam, M.U., Abbas, G., Aamir, M., Ghouri, M.I.: The in fl uence of Ga doping on structural magnetic and dielectric properties. Phys. B Condens. Matter. 526, 149 (2017). https://doi.org/10.1016/j.physb.2017.05.044

    ADS  Article  Google Scholar 

  20. 20.

    Ataie, A.: Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol – gel combustion method. Ceram. Int. 30, 1979–1983 (2004). https://doi.org/10.1016/j.ceramint.2003.12.178

    Article  Google Scholar 

  21. 21.

    Yang, Y., Wang, F., Huang, D., Shao, J., Tang, J., Mehmood, K., Rehman, U.: Influence of Sn-Mg co-substitution on the microstructural and magnetic characteristics of M-type SrCaLa hexagonal ferrites. J. Magn. Magn. Mater. 452, 100–107 (2018). https://doi.org/10.1016/j.jmmm.2017.12.047

    ADS  Article  Google Scholar 

  22. 22.

    Thakur, A., Singh, R.R., Barman, P.B.: Synthesis and characterizations of Nd3+doped SrFe12O19nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013). https://doi.org/10.1016/j.matchemphys.2013.05.063

    Article  Google Scholar 

  23. 23.

    Chen, W., Wu, W., Mao, M., Zhou, C., Zhou, S., Li, M., Wang, Q.: Improvement of the magnetization of barium hexaferrites induced by substitution of Nd3+ions for Fe3+ions. J. Supercond. Nov. Magn. 30, 707–714 (2017). https://doi.org/10.1007/s10948-016-3886-3.

    Article  Google Scholar 

  24. 24.

    Ali, I., Islam, M.U., Awan, M.S., Ahmad, M.: Effects of Ga-Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol-gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013). https://doi.org/10.1016/j.jallcom.2012.08.122

    Article  Google Scholar 

  25. 25.

    Iqbal, M.J., Farooq, S.: Could binary mixture of Nd – Ni ions control the electrical behavior of strontium – barium M-type hexaferrite nanoparticles ? Mater. Res. Bull. 46, 662–667 (2011). https://doi.org/10.1016/j.materresbull.2011.01.025

    Article  Google Scholar 

  26. 26.

    Fu, W., Yang, H., Yu, Q., Xu, J., Pang, X., Zou, G.: Preparation and magnetic properties of SrFe12O19/SiO2nanocomposites with core-shell structure. Mater. Lett. 61, 2187–2190 (2007). https://doi.org/10.1016/j.matlet.2006.08.059

    Article  Google Scholar 

  27. 27.

    Verma, V.: Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J. Alloys Compd. 641, 205 (2015). https://doi.org/10.1016/j.jallcom.2015.03.260.

    Article  Google Scholar 

  28. 28.

    Valero-Luna, C., Palomares-Sanchéz, S.A., Ruíz, F.: Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today. 266, 110–119 (2016). https://doi.org/10.1016/j.cattod.2015.08.049

    Article  Google Scholar 

  29. 29.

    Ali, I., Shaheen, N., Islam, M.U., Irfan, M., Naeem, M., Iqbal, M.A., Iftikhar, A.: Study of electrical and dielectric behavior of Tb + 3 substituted Y-type hexagonal ferrite. J. Alloys Compd. 617, 863–868 (2014). https://doi.org/10.1016/j.jallcom.2014.08.055

    Article  Google Scholar 

  30. 30.

    Ajmal, M., Absar, M.U.I.: Structural , electrical and dielectric properties of hexa-ferrite-polyaniline nano-composites. J. Supercond. Nov. Magn. 1375–1382 (2018). https://doi.org/10.1007/s10948-017-4332-x

    Article  Google Scholar 

  31. 31.

    Naeem, M., Beenish, R., Aslam, M., Fahad, M.: Synthesis , structural , magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites. J. Alloys Compd. 617, 437–443 (2014). https://doi.org/10.1016/j.jallcom.2014.08.015

    Article  Google Scholar 

  32. 32.

    R. Manjula, V.R.K. Murthy, J. Sobhanadri, R. Manjula, V.R.K. Murthy, J. Sobhanadri: Electrical conductivity and thermoelectric power measurements of some lithium – titanium ferrites electrica ’ conductivity and thermoelectric power measurements of some lithium-titanium ferrites, 2929. 59, 2929 (2013). doi:https://doi.org/10.1063/1.336954

    ADS  Article  Google Scholar 

  33. 33.

    A. Hojjati, N. Reza, M. Ali, Microstructural characteristics and magnetic properties of Al-substituted barium hexaferrite nanoparticles synthesized by auto-combustion sol – gel processing. 2821–2830 (2015). doi:https://doi.org/10.1007/s10948-015-3119-1.

    Article  Google Scholar 

  34. 34.

    Wartewig, P., Krause, M.K., Esquinazi, P., Rösler, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192, 83–99 (1999). https://doi.org/10.1016/S0304-8853(98)00382-5

    ADS  Article  Google Scholar 

  35. 35.

    Batlle, X., Obradors, X., Rodriguezcarvajal, J., Pernet, M., Cabanas, M.V., Vallet, M.: Cation distribution and intrinsic magnetic-properties of Co-Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 1614–1623 (1991)

    ADS  Article  Google Scholar 

  36. 36.

    Šimša, Z., Lego, S., Gerber, R., Pollert, E.: Cation distribution in Co-Ti-substituted barium hexaferrites: a consistent model. J. Magn. Magn. Mater. 140–144, 2103–2104 (1995). https://doi.org/10.1016/0304-8853(94)01393-4

    ADS  Article  Google Scholar 

  37. 37.

    Soman, V.V., Nanoti, V.M., Kulkarni, D.K.: Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013). https://doi.org/10.1016/j.ceramint.2012.12.089

    Article  Google Scholar 

  38. 38.

    Lisjak, D., Drofenik, M.: Synthesis and characterization of A-Sn-substituted (A=Zn, Ni, Co) BaM-hexaferrite powders and ceramics. J. Eur. Ceram. Soc. 24, 1841–1845 (2004). https://doi.org/10.1016/S0955-2219(03)00445-X

    Article  Google Scholar 

  39. 39.

    Yu, R.H., Basu, S., Zhang, Y., Parvizi-Majidi, A., Xiao, J.Q.: Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys. J. Appl. Phys. 85, 6655–6659 (1999). https://doi.org/10.1063/1.370175

    ADS  Article  Google Scholar 

  40. 40.

    C. Sudakar, G.N. Subbanna, T.R.N. Kutty: Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. 263, 253–268 (2003). doi:https://doi.org/10.1016/S0304-8853(02)01572-X.

    ADS  Article  Google Scholar 

  41. 41.

    Kaur, T., Kumar, S., Bhat, B.H., Want, B., Srivastava, A.K.: Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 119, 1531–1540 (2015). https://doi.org/10.1007/s00339-015-9134-z

    ADS  Article  Google Scholar 

  42. 42.

    Tehrani, M.K., Ghasemi, A., Moradi, M., Alam, R.S.: Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398–8400 (2011). https://doi.org/10.1016/j.jallcom.2011.05.091

    Article  Google Scholar 

  43. 43.

    Jazirehpour, M., Shams, M.H.: Microwave absorption properties of Ba–M Hexaferrite with high substitution levels of Mg–Ti in X band. J. Supercond. Nov. Magn. 30, 171–177 (2017). https://doi.org/10.1007/s10948-016-3698-5

    Article  Google Scholar 

Download references

Funding

This work was done by the support of the National Key Research and Development Program of China (grant no. 2017YFB0701900), and the Science and Technology Commission of Shanghai Municipality (grant nos. 15DZ2260303 and 16DZ2260602).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lanting Zhang or Ghulam Murtaza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Ba-hexaferrite nanoparticles synthesized by co-precipitation technique are reported.

• Optical energy band gaps (Eg) of MPs drawn by Tauc plot are in the range of 1.53–1.82 eV.

• Dielectric measurements express some relaxation behavior at high frequencies.

• Coercivity was observed as increasing trend showing its hard magnetic nature.

• The ferrites are suitable for many applications as photocatalytic, recording material, etc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashraf, G.A., Zhang, L., Abbas, W. et al. Structural, Optical, Dielectric, and Magnetic Characteristics of Nd Ions Substituted BaFe11(Sn0.5Mg0.5)xO19 M-Type Hexaferrite via Co-precipitation. J Supercond Nov Magn 32, 3273–3284 (2019). https://doi.org/10.1007/s10948-019-5047-y

Download citation

Keywords

  • Barium M-type hexaferrites (BaM)
  • Co-precipitation
  • Optical band
  • Dielectric constant
  • Magnetization