Fabrication and Magnetic Characterization of CFO/NiO and CFO/NiS Heterostructures


Magnetic analysis of different magnetic bilayers and multilayers is an important step for designing next-generation multiferroic heterostructures. In this study, we have investigated the magnetic interaction at the interface in CFO/NiO hetero-structures grown by pulsed laser deposition on sapphire substrates. The thin film heterostructure samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy disruptive X-ray spectroscopy (EDS), and superconducting quantum interference device (SQUID) for magnetic measurements. The XRD analysis on different samples shows the crystalline growth of the thin films. The SEM-EDS analysis provides information about structural and elemental compositions of the heterostructure films. A SQUID magnetometer was used to investigate the temperature and field-dependent magnetic properties. To better understand the magnetic properties of the thin film heterostructure samples, zero field cool (ZFC) and field cool (FC) magnetization data were analyzed. At low temperature, ferromagnetic hysteresis loop was observed. A shift in the M-H hysteresis curve was observed for the FC data from the ZFC data, which indicates the presence of exchange bias effect. In addition, we have examined the effect of antiferromagnetic NiS thin films on ferromagnetism of CFO. This study on the magnetic interaction between a ferromagnetic layer and an antiferromagnetic layer can advance the frontier for applications in spin valves, magnetic sensors, and magnetic random access memory.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). https://doi.org/10.1038/nmat1805

    ADS  Article  Google Scholar 

  2. 2.

    Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science. 309, 391–392 (2005). https://doi.org/10.1126/science.1113357.

    Article  Google Scholar 

  3. 3.

    Scott, J.F.: Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007). https://doi.org/10.1038/nmat1868.

    ADS  Article  Google Scholar 

  4. 4.

    Mamun, M.A., Haque, A., Pelton, A., Paul, B., Ghosh, K.: Structural, electronic, and magnetic analysis and device characterization of ferroelectric-ferromagnetic heterostructure (BZT-BCT/LSMO/LAO) devices for multiferroic applications. IEEE Trans. Magn. 54, 1–8 (2018). https://doi.org/10.1109/TMAG.2018.2873513

    Article  Google Scholar 

  5. 5.

    Vopson, M.M.: Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015). https://doi.org/10.1080/10408436.2014.992584

    ADS  Article  Google Scholar 

  6. 6.

    Rana, S.B., Singh, R.P.P.: Investigation of structural, optical, magnetic properties and antibacterial activity of Ni-doped zinc oxide nanoparticles. J. Mater. Sci. Mater. Electron. 27, 9346–9355 (2016). https://doi.org/10.1007/s10854-016-4975-6

    Article  Google Scholar 

  7. 7.

    Arya, S., Lehana, P.K., Rana, S.B.: Synthesis of zinc oxide nanoparticles and their morphological, optical, and electrical characterizations. J. Electron. Mater. 46, 4604–4611 (2017). https://doi.org/10.1007/s11664-017-5469-x

    ADS  Article  Google Scholar 

  8. 8.

    Mukherjee, D., Hyde, R., Hordagoda, M., Bingham, N., Srikanth, H., Witanachchi, S., Mukherjee, P.: Challenges in the stoichiometric growth of polycrystalline and epitaxial PbZr0.52Ti0.48O3/La0.7Sr0.3MnO3 multiferroic heterostructures using pulsed laser deposition. J. Appl. Phys. 112, 064101 (2012). https://doi.org/10.1063/1.4751027

    ADS  Article  Google Scholar 

  9. 9.

    A.R. Mahbub, A. Haque, M.A.-A. Mamun, K. Ghosh, Fabrication and thickness dependent magnetic studies of CFO/LSMO/LAO multiferroic heterostructures, Appl. Surf. Sci. (2019) Under review.

  10. 10.

    Néel, M.L.: Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 12, 137–198 (1948). https://doi.org/10.1051/anphys/194812030137

    Article  Google Scholar 

  11. 11.

    Arcas, J., Hernando, A., Barandiarán, J.M., Prados, C., Vázquez, M., Marín, P., Neuweiler, A.: Soft to hard magnetic anisotropy in nanostructured magnets. Phys. Rev. B. 58, 5193–5196 (1998). https://doi.org/10.1103/PhysRevB.58.5193

    ADS  Article  Google Scholar 

  12. 12.

    M.A. Mamun, A. Haque, A. Pelton, B. Paul, K. Ghosh, Fabrication and ferromagnetic resonance study of BZT-BCT/LSMO heterostructure films on LAO and Pt, J. Magn. Magn. Mater. (2019) Accepted (In press)

  13. 13.

    Haque, A., Mamun, M.A., Taufique, M.F.N., Karnati, P., Ghosh, K.: Large magnetoresistance and electrical transport properties in reduced graphene oxide thin film. IEEE Trans. Magn. 54, 1–9 (2018). https://doi.org/10.1109/TMAG.2018.2873508

    Article  Google Scholar 

  14. 14.

    Roth, W.L.: Neutron and optical studies of domains in NiO. J. Appl. Phys. 31, 2000–2011 (1960). https://doi.org/10.1063/1.1735486

    ADS  Article  Google Scholar 

  15. 15.

    Haque, A., Mamun, M.A., Taufique, M.F.N., Karnati, P., Ghosh, K.: Temperature dependent electrical transport properties of high carrier mobility reduced graphene oxide thin film devices. IEEE Trans. Semicond. Manuf. 31, 535–544 (2018). https://doi.org/10.1109/TSM.2018.2873202

    Article  Google Scholar 

  16. 16.

    Patil, P.S., Kadam, L.D.: Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl. Surf. Sci. 199, 211–221 (2002). https://doi.org/10.1016/S0169-4332(02)00839-5

    ADS  Article  Google Scholar 

  17. 17.

    Long, H., Shi, T., Hu, H., Jiang, S., Xi, S., Tang, Z.: Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 4, 7413–7413 (2014). https://doi.org/10.1038/srep07413.

    ADS  Article  Google Scholar 

  18. 18.

    Chen, H.-L., Lu, Y.-M., Hwang, W.-S.: Characterization of sputtered NiO thin films. Surf. Coat. Technol. 198, 138–142 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.032

    Article  Google Scholar 

  19. 19.

    Mukherjee, D., Hordagoda, M., Lampen, P., Phan, M.-H., Srikanth, H., Witanachchi, S., Mukherjee, P.: Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr0.52Ti0.48)O3/CoFe2O4/La0.7Sr0.3MnO3 multiferroic heterostructures grown using dual-laser ablation technique. J. Appl. Phys. 115, 17D707 (2014). https://doi.org/10.1063/1.4863165

    Article  Google Scholar 

  20. 20.

    Mukherjee, D., Dhakal, T., Hyde, R., Mukherjee, P., Srikanth, H., Witanachchi, S.: Role of epitaxy in controlling the magnetic and magnetostrictive properties of cobalt ferrite–PZT bilayers. J. Phys. Appl. Phys. 43, 485001 (2010). https://doi.org/10.1088/0022-3727/43/48/485001

    Article  Google Scholar 

  21. 21.

    Ney, A., Kammermeier, T., Ney, V., Ollefs, K., Ye, S.: Limitations of measuring small magnetic signals of samples deposited on a diamagnetic substrate. J. Magn. Magn. Mater. 320, 3341–3346 (2008). https://doi.org/10.1016/j.jmmm.2008.07.008

    ADS  Article  Google Scholar 

  22. 22.

    Li, Y.-C., Pan, D.-F., Wu, J., Li, Y., Wang, G., Liu, J.-M., Wan, J.-G.: Manipulating the exchange bias effect of Pb(Zr0.52Ti0.48)O3/CoFe2O4/NiO heterostructural films by electric fields. Appl. Phys. Lett. 109, 172904 (2016). https://doi.org/10.1063/1.4966545

    ADS  Article  Google Scholar 

  23. 23.

    Huang, W., Zhu, J., Zeng, H.Z., Wei, X.H., Zhang, Y., Li, Y.R.: Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films. Appl. Phys. Lett. 89, 262506 (2006). https://doi.org/10.1063/1.2424444

    ADS  Article  Google Scholar 

  24. 24.

    Koehler, R.F., White, R.L.: Metal-to-semimetal transition in NiS. J. Appl. Phys. 44, 1682–1686 (1973). https://doi.org/10.1063/1.1662431

    ADS  Article  Google Scholar 

  25. 25.

    Li, S., John, V.T., O’Connor, C., Harris, V., Carpenter, E.: Cobalt-ferrite nanoparticles: structure, cation distributions, and magnetic properties. J. Appl. Phys. 87, 6223–6225 (2000). https://doi.org/10.1063/1.372661

    ADS  Article  Google Scholar 

  26. 26.

    Raghunathan, A., Nlebedim, I.C., Jiles, D.C., Snyder, J.E.: Growth of crystalline cobalt ferrite thin films at lower temperatures using pulsed-laser deposition technique. J. Appl. Phys. 107, 09A516 (2010). https://doi.org/10.1063/1.3357315

    Article  Google Scholar 

Download references


Ariful Haque and Ahmed R. Mahbub contributed equally to this paper as first authors. We would like to deeply thank the Wright-Patterson Air Force Base for providing us with the technical assistance during data acquisition.


We would like to acknowledge the National Science Foundation (NSF) grants (DMR-0723105 and DMR-0821159) for supporting this study.

Author information



Corresponding author

Correspondence to Ahmed R. Mahbub.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahbub, A.R., Haque, A. & Ghosh, K. Fabrication and Magnetic Characterization of CFO/NiO and CFO/NiS Heterostructures. J Supercond Nov Magn 32, 2857–2864 (2019). https://doi.org/10.1007/s10948-019-5032-5

Download citation


  • NiO
  • CFO
  • NiS
  • Heterostructure
  • Magnetic measurements
  • Ferromagnetism