Influence of Viscosity on Dynamic Magnetization of Thermally Blocked Iron Oxide Nanoparticles Characterized by a Sensitive AC Magnetometer


In this work, we show that the viscosity of carrier liquid affects the dynamic magnetization of thermally blocked multi-core iron oxide nanoparticles. The core size of the nanoparticles was determined from the magnetization curve measured by a specially developed high-Tc SQUID magnetometer and calculated to be 11.7 nm. Using an AC magnetometer developed based on induction coils, the dynamic magnetization of the multi-core iron oxide nanoparticle solution was measured from 3 Hz to 10.48 kHz. Later, we reconstructed of the hydrodynamic size distribution of the particles by assuming a log-normal distribution of particle size in an AC susceptibility model by Shliomis and Stepanov, which accounts for anisotropic directions of the easy axes of magnetic nanoparticles with respect to the excitation field direction. The reconstructed hydrodynamic sizes showed an average diameter of 130 nm and agreed with the size determined by dynamic light scattering method. In the case of increasing viscosity of the carrier liquids from 0.89 to 8.11 mPa s, the dynamic magnetization peaks of the imaginary component have shifted to a lower frequency region. We showed that the harmonics ratio and phase delay upon the magnetic field excitation at 30 Hz could also be used to determine the viscosity of carrier liquid independently.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Saritas, E.U., Goodwill, P.W., Croft, L.R., Konkle, J.J., Lu, K., Zheng, B., Conolly, S.M.: Magnetic particle imaging (MPI) for NMR and MRI researchers. J. Magn. Reson. 229, 116–126 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature. 435, 1214–1217 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Goodwill, P.W., Scott, G.C., Stang, P.P., Conolly, S.M.: Narrowband magnetic particle imaging. IEEE Trans. Med. Imaging. 28, 1231–1237 (2009).

    Article  Google Scholar 

  4. 4.

    Bai, S., Hirokawa, A., Tanabe, K., Sasayama, T., Yoshida, T., Enpuku, K.: Narrowband magnetic particle imaging utilizing electric scanning of field free point. IEEE Trans. Magn. 51, 1–4 (2015).

    Article  Google Scholar 

  5. 5.

    Vogel, P., Rückert, M.A., Klauer, P., Kullmann, W.H., Jakob, P.M., Behr, V.C.: First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys. Med. Biol. 61, 6620–6634 (2016).

    Article  Google Scholar 

  6. 6.

    Graeser, M., Knopp, T., Szwargulski, P., Friedrich, T., von Gladiss, A., Kaul, M., Krishnan, K.M., Ittrich, H., Adam, G., Buzug, T.M.: Towards picogram detection of superparamagnetic Iron-oxide particles using a gradiometric receive coil. Sci. Rep. 7, 6872 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Ozel, F., Kockar, H., Karaagac, O.: Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015).

    Article  Google Scholar 

  8. 8.

    Connord, V., Mehdaoui, B., Tan, R.P., Carrey, J., Respaud, M.: An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples - a useful setup for magnetic hyperthermia applications. Rev. Sci. Instrum. 85, 093904 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Mamiya, H., Jeyadevan, B.: Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 1, 157 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Enpuku, K., Tanaka, T., Matsuda, T., Dang, F., Enomoto, N., Hojo, J., Yoshinaga, K., Ludwig, F., Ghaffari, F., Heim, E., Schilling, M.: Properties of magnetic nanoparticles in the Brownian relaxation range for liquid phase immunoassays. J. Appl. Phys. 102, 054901 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    Calero-DdelC, V.L., Santiago-Quiñonez, D.I., Rinaldi, C.: Quantitative nanoscale viscosity measurements using magnetic nanoparticles and SQUID AC susceptibility measurements. Soft Matter. 7, 4497 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Karaagac, O., Kockar, H.: A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: optimization by experimental design. J. Magn. Magn. Mater. 409, 116–123 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Ludwig, F., Balceris, C., Jonasson, C., Johansson, C.: Analysis of ac susceptibility spectra for the characterization of magnetic nanoparticles. 9464 (2017).

    Google Scholar 

  14. 14.

    Ludwig, F., Heim, E., Schilling, M.: Characterization of superparamagnetic nanoparticles by analyzing the magnetization and relaxation dynamics using fluxgate magnetometers. J. Appl. Phys. 101, 113909 (2007).

    ADS  Article  Google Scholar 

  15. 15.

    Bogren, S., Fornara, A., Ludwig, F., del Puerto Morales, M., Steinhoff, U., Hansen, M., Kazakova, O., Johansson, C.: Classification of magnetic nanoparticle systems—synthesis, standardization and analysis methods in the nanomag project. Int. J. Mol. Sci. 16, 20308–20325 (2015).

    Article  Google Scholar 

  16. 16.

    Sasayama, T., Yoshida, T., Saari, M.M.M., Enpuku, K.: Comparison of volume distribution of magnetic nanoparticles obtained from M-H curve with a mixture of log-normal distributions. J. Appl. Phys. 117, 17D155 (2015).

    Article  Google Scholar 

  17. 17.

    Berkov, D.V., Görnert, P., Buske, N., Gansau, C., Mueller, J., Giersig, M., Neumann, W., Su, D.: New method for the determination of the particle magnetic moment distribution in a ferrofluid. J. Phys. D. Appl. Phys. 33, 331–337 (2000).

    ADS  Article  Google Scholar 

  18. 18.

    Saari, M.M., Sakai, K., Kiwa, T., Sasayama, T., Yoshida, T., Tsukada, K.: Characterization of the magnetic moment distribution in low-concentration solutions of iron oxide nanoparticles by a high- T c superconducting quantum interference device magnetometer. J. Appl. Phys. 117, 17B321 (2015).

    Article  Google Scholar 

  19. 19.

    Suhaimi, N.S., Saari, M.M., Mohamed, A.I., et al.: Development of a compact and sensitive AC magnetometer for evaluation of magnetic nanoparticles solution. In: 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). IEEE, pp 221–224 (2017)

  20. 20.

    Shliomis, M.I., Stepanov, V.I.: Frequency dependence and long time relaxation of the susceptibility of the magnetic fluids. J. Magn. Magn. Mater. 122, 176–181 (1993).

    ADS  Article  Google Scholar 

  21. 21.

    Saari, M.M., Suhaimi, N.S., Razali, S., et al.: Development of a resonant excitation coil of AC magnetometer for evaluation of magnetic fluid. J Telecommun Electron Comput Eng. 10, 127–130 (2018)

    Article  Google Scholar 

  22. 22.

    Svedlindh, P., Jonsson, T., García-Palacios, J.L.: Intra-potential-well contribution to the AC susceptibility of a noninteracting nano-sized magnetic particle system. J. Magn. Magn. Mater. 169, 323–334 (1997).

    ADS  Article  Google Scholar 

  23. 23.

    Ludwig, F., Balceris, C., Johansson, C.: The anisotropy of the AC susceptibility of immobilized magnetic nanoparticles—the influence of intra-potential-well contribution on the AC susceptibility spectrum. IEEE Trans. Magn. 53, 1–4 (2017).

    Article  Google Scholar 

  24. 24.

    Enpuku, K., Sasayama, T., Yoshida, T.: Estimation of magnetic moment and anisotropy energy of magnetic markers for biosensing application. J. Appl. Phys. 119, 184902 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Prieto Astalan, A., Jonasson, C., Petersson, K., Blomgren, J., Ilver, D., Krozer, A., Johansson, C.: Magnetic response of thermally blocked magnetic nanoparticles in a pulsed magnetic field. J. Magn. Magn. Mater. 311, 166–170 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    van Rijssel, J., Kuipers, B.W.M., Erné, B.H.: Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis. J. Magn. Magn. Mater. 353, 110–115 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Ahrentorp, F., Astalan, A.P., Jonasson, C., et al.: Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf Proc. 1311, 213–223 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Rauwerdink, A.M., Weaver, J.B.: Harmonic phase angle as a concentration-independent measure of nanoparticle dynamics. Med. Phys. 37, 2587–2592 (2010).

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Higher Education of Malaysia under grant number of RDU 160115, Research Management Center of Universiti Malaysia Pahang under grant number of RDU 170377, and the “Strategic Promotion of Innovative R&D” of the Japan Science and Technology Agency (JST).

Author information



Corresponding author

Correspondence to Mohd Mawardi Saari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saari, M.M., Suhaimi, N.S., Sulaiman, M.H. et al. Influence of Viscosity on Dynamic Magnetization of Thermally Blocked Iron Oxide Nanoparticles Characterized by a Sensitive AC Magnetometer. J Supercond Nov Magn 32, 2765–2772 (2019).

Download citation


  • Brownian relaxation
  • Dynamic magnetization
  • Iron oxide nanoparticles
  • Magnetometer