Skip to main content
Log in

Superconductivity in SrTiO3: Dielectric Function Method for Non-Parabolic Bands

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The dielectric function method for superconductivity has been applied to SrTiO3 accounting for the non-parabolic dispersion of charge carriers in the conduction band and for the dispersion of optical phonons based on density functional theory calculations. The obtained critical temperatures of the superconducting phase transition in SrTiO3 are in agreement with experiments in the density range n ∼ 5 × 1018 to 5 × 1020cm− 3. The dielectric function method predicts also the sign of the anomalous isotope effect in strontium titanate, in line with recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schooley, J., Hosler, W., Cohen, M.L.: Phys. Rev. Lett. 12, 474 (1964)

    Article  ADS  Google Scholar 

  2. Koonce, C.S., et al.: Phys. Rev. 163, 380–390 (1967)

    Article  ADS  Google Scholar 

  3. Binnig, G., et al.: Phys. Rev. Lett. 45, 1352–1355 (1980)

    Article  ADS  Google Scholar 

  4. Lin, X., et al.: Phys. Rev. Lett. 112, 207002 (2014)

    Article  ADS  Google Scholar 

  5. Collignon, C., et al.: Phys. Rev. B 96, 224506 (2017)

    Article  ADS  Google Scholar 

  6. Lin, X., et al.: Phys. Rev. B 92, 174504 (2015)

    Article  ADS  Google Scholar 

  7. Rischau, C.W., et al.: Nat. Phys. 13, 643 (2017)

    Article  Google Scholar 

  8. Swartz, A.G., et al.: PNAS 115, 1475 (2018)

    Article  ADS  Google Scholar 

  9. Rowley, S.E., et al.: arXiv:1801.08121

  10. Ruhman, J., Lee, P.A.: Phys. Rev. B 94, 224515 (2016)

    Article  ADS  Google Scholar 

  11. Rosenstein, B., et al.: Phys. Rev. B 94, 024505 (2016)

    Article  ADS  Google Scholar 

  12. Klimin, S.N., Tempere, J., Devreese, J.T., der Marel, D.: J. Sup. Nov. Magn. 30, 757 (2017)

    Article  Google Scholar 

  13. Klimin, S.N., Tempere, J., Devreese, J.T., van der Marel, D.: Phys. Rev. B 89, 184514 (2014)

    Article  ADS  Google Scholar 

  14. Edge, J.M., et al.: Phys. Rev. Lett. 115, 247002 (2015)

    Article  ADS  Google Scholar 

  15. Wölfle, P., Balatsky, A.V.: arXiv:1803.06993

  16. Gor’kov, L.P.: J. Supercond. Nov. Magn. 30, 845 (2017)

    Article  Google Scholar 

  17. McMillan, W.L.: Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  18. Kirzhnits, D.A., Maksimov, E.G., Khomskii, D.I.: J. Low Temp. Phys. 10, 79–93 (1973)

    Article  ADS  Google Scholar 

  19. Gurevich, L.V., Larkin, A.I., Firsov, Y.A.: Sov. Phys. Sol. State 4, 131 (1962)

    Google Scholar 

  20. Collignon, C., et al: arXiv:1804.07067

  21. Morel, P., Anderson, P.W.: Phys. Rev. 125, 1263 (1962)

    Article  ADS  Google Scholar 

  22. Takada, Y.: J. Phys. Soc. Jpn. 45, 786 (1978)

    Article  ADS  Google Scholar 

  23. Takada, Y.: J. Phys. Soc. Jpn. 49, 1267 (1980)

    Article  ADS  Google Scholar 

  24. Takada, Y.: J. Phys. Soc. Jpn. 49, 1713 (1980)

    Article  ADS  Google Scholar 

  25. Stucky, A., et al.: Sci. Rep. 6, 37582 (2016)

    Article  ADS  Google Scholar 

  26. Kresse, G., Hafner, J.: Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  27. Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  28. Perdew, J.P., et al.: Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., et al.: Phys. Rev. Lett. 102, 039902 (2009)

    Article  ADS  Google Scholar 

  30. van Mechelen, J.L.M., et al.: Phys. Rev. Lett. 100, 226403 (2008)

    Article  ADS  Google Scholar 

  31. Kamarás, K., et al.: J. Appl. Phys. 78, 1235 (1995)

    Article  ADS  Google Scholar 

  32. Janotti, A., et al.: Appl. Phys. Lett. 100, 262104 (2012)

    Article  ADS  Google Scholar 

  33. Gervais, F., et al.: Phys. Rev. B 47, 8187 (1993)

    Article  ADS  Google Scholar 

  34. Ergönenc, Z., Kim, B., Liu, P., Kresse, G., Franchini, C.: Phys. Rev. Materials 2, 024601 (2018)

    Article  ADS  Google Scholar 

  35. Devreese, J.T.: arXiv:1611.06122

  36. Devreese, J.T., et al.: Phys. Rev. B 81, 125119 (2010)

    Article  ADS  Google Scholar 

  37. Born, M., Kun, H.: Dynamical Theory of Crystal Lattices. Oxford University Press (1954)

  38. Sanna, A., et al.: J. Phys. Soc. Jpn. 87, 041012 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the joint FWO-FWF project POLOX (Grant No. I 2460-N36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Klimin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimin, S., Tempere, J., Devreese, J.T. et al. Superconductivity in SrTiO3: Dielectric Function Method for Non-Parabolic Bands. J Supercond Nov Magn 32, 2739–2744 (2019). https://doi.org/10.1007/s10948-019-5029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5029-0

Keywords

Navigation