Superconductivity in SrTiO3: Dielectric Function Method for Non-Parabolic Bands

Abstract

The dielectric function method for superconductivity has been applied to SrTiO3 accounting for the non-parabolic dispersion of charge carriers in the conduction band and for the dispersion of optical phonons based on density functional theory calculations. The obtained critical temperatures of the superconducting phase transition in SrTiO3 are in agreement with experiments in the density range n ∼ 5 × 1018 to 5 × 1020cm− 3. The dielectric function method predicts also the sign of the anomalous isotope effect in strontium titanate, in line with recent observations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Schooley, J., Hosler, W., Cohen, M.L.: Phys. Rev. Lett. 12, 474 (1964)

    ADS  Article  Google Scholar 

  2. 2.

    Koonce, C.S., et al.: Phys. Rev. 163, 380–390 (1967)

    ADS  Article  Google Scholar 

  3. 3.

    Binnig, G., et al.: Phys. Rev. Lett. 45, 1352–1355 (1980)

    ADS  Article  Google Scholar 

  4. 4.

    Lin, X., et al.: Phys. Rev. Lett. 112, 207002 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    Collignon, C., et al.: Phys. Rev. B 96, 224506 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    Lin, X., et al.: Phys. Rev. B 92, 174504 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    Rischau, C.W., et al.: Nat. Phys. 13, 643 (2017)

    Article  Google Scholar 

  8. 8.

    Swartz, A.G., et al.: PNAS 115, 1475 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    Rowley, S.E., et al.: arXiv:1801.08121

  10. 10.

    Ruhman, J., Lee, P.A.: Phys. Rev. B 94, 224515 (2016)

    ADS  Article  Google Scholar 

  11. 11.

    Rosenstein, B., et al.: Phys. Rev. B 94, 024505 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    Klimin, S.N., Tempere, J., Devreese, J.T., der Marel, D.: J. Sup. Nov. Magn. 30, 757 (2017)

    Article  Google Scholar 

  13. 13.

    Klimin, S.N., Tempere, J., Devreese, J.T., van der Marel, D.: Phys. Rev. B 89, 184514 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    Edge, J.M., et al.: Phys. Rev. Lett. 115, 247002 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    Wölfle, P., Balatsky, A.V.: arXiv:1803.06993

  16. 16.

    Gor’kov, L.P.: J. Supercond. Nov. Magn. 30, 845 (2017)

    Article  Google Scholar 

  17. 17.

    McMillan, W.L.: Phys. Rev. 167, 331 (1968)

    ADS  Article  Google Scholar 

  18. 18.

    Kirzhnits, D.A., Maksimov, E.G., Khomskii, D.I.: J. Low Temp. Phys. 10, 79–93 (1973)

    ADS  Article  Google Scholar 

  19. 19.

    Gurevich, L.V., Larkin, A.I., Firsov, Y.A.: Sov. Phys. Sol. State 4, 131 (1962)

    Google Scholar 

  20. 20.

    Collignon, C., et al: arXiv:1804.07067

  21. 21.

    Morel, P., Anderson, P.W.: Phys. Rev. 125, 1263 (1962)

    ADS  Article  Google Scholar 

  22. 22.

    Takada, Y.: J. Phys. Soc. Jpn. 45, 786 (1978)

    ADS  Article  Google Scholar 

  23. 23.

    Takada, Y.: J. Phys. Soc. Jpn. 49, 1267 (1980)

    ADS  Article  Google Scholar 

  24. 24.

    Takada, Y.: J. Phys. Soc. Jpn. 49, 1713 (1980)

    ADS  Article  Google Scholar 

  25. 25.

    Stucky, A., et al.: Sci. Rep. 6, 37582 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    Kresse, G., Hafner, J.: Phys. Rev. B 47, 558 (1993)

    ADS  Article  Google Scholar 

  27. 27.

    Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)

    ADS  Article  Google Scholar 

  28. 28.

    Perdew, J.P., et al.: Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    Perdew, J.P., et al.: Phys. Rev. Lett. 102, 039902 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    van Mechelen, J.L.M., et al.: Phys. Rev. Lett. 100, 226403 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    Kamarás, K., et al.: J. Appl. Phys. 78, 1235 (1995)

    ADS  Article  Google Scholar 

  32. 32.

    Janotti, A., et al.: Appl. Phys. Lett. 100, 262104 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    Gervais, F., et al.: Phys. Rev. B 47, 8187 (1993)

    ADS  Article  Google Scholar 

  34. 34.

    Ergönenc, Z., Kim, B., Liu, P., Kresse, G., Franchini, C.: Phys. Rev. Materials 2, 024601 (2018)

    ADS  Article  Google Scholar 

  35. 35.

    Devreese, J.T.: arXiv:1611.06122

  36. 36.

    Devreese, J.T., et al.: Phys. Rev. B 81, 125119 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    Born, M., Kun, H.: Dynamical Theory of Crystal Lattices. Oxford University Press (1954)

  38. 38.

    Sanna, A., et al.: J. Phys. Soc. Jpn. 87, 041012 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the joint FWO-FWF project POLOX (Grant No. I 2460-N36).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Klimin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klimin, S., Tempere, J., Devreese, J.T. et al. Superconductivity in SrTiO3: Dielectric Function Method for Non-Parabolic Bands. J Supercond Nov Magn 32, 2739–2744 (2019). https://doi.org/10.1007/s10948-019-5029-0

Download citation

Keywords

  • Superconductivity
  • Strontium titanate
  • Dielectric function method